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Abstract:	22	
A	key	question	for	volcanic	hazard	assessment	is	the	extent	to	which	information	23	

can	be	exchanged	between	volcanoes.	This	question	is	particularly	pertinent	to	24	

hazard	forecasting	for	dome-building	volcanoes,	where	effusive	activity	may	persist	25	

for	years	to	decades,	and	may	be	punctuated	by	periods	of	repose,	and	sudden	26	

explosive	activity.	Here	we	review	historical	eruptive	activity	of	fifteen	lava	dome-27	

building	volcanoes	over	the	past	two	centuries,	with	the	goal	of	creating	a	hierarchy	28	

of	exchangeable	(i.e.,	similar)	behaviours.	Eruptive	behaviour	is	classified	using	29	

empirical	observations	that	include	patterns	of	SO2	flux,	eruption	style,	and	magma	30	

composition.	We	identify	two	eruptive	regimes:	(i)	an	episodic	regime	where	31	

eruptions	are	much	shorter	than	intervening	periods	of	repose,	and	degassing	is	32	

temporally	correlated	with	lava	effusion;	and	(ii)	a	persistent	regime	where	33	

eruptions	are	comparable	in	length	to	periods	of	repose	and	gas	emissions	do	not	34	

correlate	with	eruption	rates.	A	corollary	to	these	two	eruptive	regimes	is	that	there	35	

are	also	two	different	types	of	repose:	(i)	inter-eruptive	repose	separates	episodic	36	

eruptions,	and	is	characterised	by	negligible	gas	emissions	and	(ii)	intra-eruptive	37	

repose	is	observed	in	persistently	active	volcanoes,	and	is	characterised	by	38	



continuous	gas	emissions.	We	suggest	that	these	different	patterns	of	can	be	used	to	39	

infer	vertical	connectivity	within	mush-dominated	magmatic	systems.	We	also	note	40	

that	our	recognition	of	two	different	types	of	repose	raises	questions	about	41	

traditional	definitions	of	historical	volcanism	as	a	point	process.	This	is	important,	42	

because	the	ontology	of	eruptive	activity	(that	is,	the	definition	of	volcanic	activity	in	43	

time)	influences	both	analysis	of	volcanic	data	and,	by	extension,	interpretations	of	44	

magmatic	processes.	Our	analysis	suggests	that	one	identifying	exchangeable	traits	45	

or	behaviours	provides	a	starting	point	for	developing	robust	ontologies	of	volcanic	46	

activity.	Moreover,	by	linking	eruptive	regimes	to	conceptual	models	of	magmatic	47	

processes,	we	illustrate	a	path	toward	developing	a	conceptual	framework	not	only	48	

for	comparing	data	between	different	volcanoes	but	also	for	improving	forecasts	of	49	

eruptive	activity.	50	

	51	
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1.	Introduction	56	

	57	

Volcanic	activity	can	be	manifested	in	many	different	ways.	From	a	volcanic	risk	58	

perspective	one	important	variety	of	eruptive	activity	is	extrusion	of	lava	domes	at	59	

intermediate	and	silicic	volcanoes.	Recurrent	hazards	associated	with	dome-60	

building	activity	include:	pyroclastic	flows	and	volcanic	blasts	associated	with	the	61	

collapse	of	lava	domes	and	edifice	instability;	fountain-fed	pyroclastic	flows	62	

associated	with	Vulcanian	to	sub-Plinian	explosions;	and	copious	tephra	fall	.	63	

Worldwide,	such	volcanic	activity	has	been	responsible	for	over	two	thirds	of	64	

volcanic	fatalities	since	1600	C.E.	(Auker	et	al.,	2013).	65	

	66	

Within	the	Smithsonian	Global	Volcanism	Program	(GVP)	database	there	are	205	67	

recorded	dome-building	volcanoes	that	have	been	active	in	the	Holocene	(Siebert	et	68	

al.,	2010).	Of	these,	117	have	erupted	in	the	last	millennium	and	89	have	erupted	69	

since	1900	C.E.	(Ogburn	et	al.,	2015).	Historical	eruptions	have	lasted	many	months,	70	

years	or	even	decades	(Newhall	and	Melson,	1983;	Sparks,	1997;	Ogburn	et	al.,	71	

2015).	Over	historical	timescales	volcanic	activity	can	be	regarded	as	continuous,	72	

albeit	fluctuating,	but	may	also	include	complex	episodic	and	sometimes	cyclic	73	

fluctuations	in	intensity,	duration,	frequency	and	eruptive	style.		74	

	75	

Lava	dome	formation	requires	particular	conditions,	which	suggests	that	magmatic	76	

processes	at	dome-building	volcanoes	have	shared	characteristics.	Specifically,	the	77	

lavas	of	dome-building	volcanoes	have	low	average	eruption	rates	(~10-1	to	10-2	78	



km3	yr-1)	and	high	viscosities	(106	to	1011	Pa	s;	Yokayama,	2005)	that	are	commonly	79	

associated	with	high	groundmass	crystallinity	(Cashman,	1992)	and,	consequently,	80	

substantial	yield	strength	(Calder	et	al.,	2015).	Nevertheless,	dome-building	81	

volcanoes	can	exhibit	markedly	different	eruptive	histories,	including	both	the	82	

duration	of	individual	eruptive	episodes	and	the	potential	for	explosive	activity.	This	83	

variability	reflects	the	general	conceptual	tensions	in	volcanology	where:	(1)	there	84	

is	a	belief	that	individual	volcanoes	are	unique,	as	exhibited	by	the	complex	nature	85	

of	their	eruptive	records,	and	(2)	the	concept	that	eruptive	activity	is	driven	by	86	

common	magmatic	processes	that	produce	certain	eruptive	styles	and	volcano	87	

morphologies	(Cashman	&	Biggs,	2014).	88	

	89	

In	this	review	we	identify	characteristics	of	fifteen	lava-dome	building	volcanoes	90	

that	are	similar	(exchangeable)	or	unique	(not	exchangeable),	as	well	as	those	that	91	

are	common	only	to	a	sub-group	of	volcanic	records.	In	volcanology,	for	example,	92	

the	concept	of	exchangeable	characteristics	can	be	used	to	define	the	common	traits	93	

for	all	volcanoes,	and	to	infer	the	conceptual	system	that	this	definition	represents.	94	

Using	this	idea,	the	basic	exchangeable	characteristics	of	a	volcanic	system	-	implied	95	

by	the	definition	of	a	volcano	by	Borgia	et	al.	(2010)	-	are	simply	magma,	eruption,	96	

and	edifice.	We	ally	to	this	the	idea	that	the	volcanic	system	(and	thus	the	97	

conceptual	construct	of	volcanism)	should	be	hierarchically	organized,	such	that	98	

identifying	and	characterizing	different	hierarchies	allows	individual	volcanoes	to	99	

be	distinguished	in	space	and	time	(Szakács,	2010).	For	this	reason,	we	develop	a	100	

hierarchy	of	different	eruptive	behaviours	using	observations	from	the	historical	101	



records	of	fifteen	well-characterised	dome-building	volcanoes.	By	characterising	102	

exchangeable	behaviours	we	can	assess	inaccessible	elements	(e.g.,	the	magmatic	103	

system)	from	observed	elements	(e.g.,	surface	phenomena).	A	similar	approach	is	104	

employed	in	medical	sciences,	where	individuals	(i.e.	humans)	are	unique,	but	105	

different	groups	of	humans	are	known	to	have	similar	health	traits	(Spiegelhalter,	106	

1986;	Best	et	al.,	2013).	107	

	108	

Using	a	hierarchical	construct	for	eruptive	behaviours	at	dome-building	volcanoes	109	

we	consider	the	conceptual	system	that	can	explain	the	different	sets	of	shared	110	

traits	and	characteristics.	Specifically,	we	ask	whether	the	diversity	in	behaviours	111	

can	be	explained	by	subsystems	of	the	magmatic	system	(e.g.,	shallow	crustal	112	

reservoirs)	or	whether	it	requires	a	more	holistic	view	of	crustal	magmatic	113	

processes	(i.e.,	a	transcrustal	reservoir	system	that	extends	from	the	surface	114	

through	the	crust	and	into	the	mantle).	This	approach	allows	us	to	evaluate	115	

emerging	paradigms	for	eruptive	activity	based	on	the	destabilisation	and	116	

reorganisation	of	igneous	mush	systems	(e.g.,	Cashman	and	Giordano,	2014;	117	

Christopher	et	al.,	2015),	and	to	interpret	the	role	of	connectivity	within	a	magmatic	118	

system	on	the	pattern	and	style	of	eruptive	activity	at	dome-building	volcanoes.	119	

	120	

An	additional	application	of	our	study	relates	to	the	implications	of	a	hierarchical	121	

construct	on	the	analysis	of	volcanic	datasets.	An	important	issue	relates	to	the	122	

concept	of	volcanic	activity	as	a	point-process	of	discrete	events	as	this	influences	123	

how	magmatic	processes	are	interpreted	and	how	probabilistic	forecasts	are	made.	124	



We	also	examine	the	implications	of	different	patterns	of	eruptive	behaviour	on	125	

forecasting	the	activity	of	one	volcano	using	observations	from	other	(perhaps	126	

better	characterized)	volcanoes	of	the	same	type.	We	discuss	the	issues	when	127	

selecting	evidence	to	make	eruptive	forecasts	and	contextualize	this	in	regards	of	128	

forecasting	the	onset	of	eruptive	activity.		129	

	130	

2.	Data	131	

	132	

The	fifteen	dome-building	volcanoes	selected	for	this	review	are	listed	in	Figure	1.	133	

Our	selection	is	governed	by	the	quality	of	available	data	and	relevant	observations,	134	

and	guided	by	the	principle	that	our	dataset	should	contain	volcanoes	that	are	well-135	

characterised,	have	long	records	of	activity	and	have	been	recently	active.	All	fifteen	136	

volcanoes	sit	in	arc	environments,	and	erupt	magmas	that	are	hydrous	and	137	

intermediate	in	composition.	As	volcanic	gas	emissions	are	an	important	aspect	of	138	

dome-building	volcanism,	we	also	include	one	volcano	characterised	by	persistent	139	

gas	emissions	but	no	recent	eruptive	activity.	140	

	141	

To	enable	comparison	of	similar	dome-building	behaviour,	we	restricted	the	142	

selection	to	volcanoes	of	intermediate	composition,	thus	omitting	domes	formed	by	143	

the	eruption	of	crystal-poor	rhyolites	(e.g.,	Chaiten	2008:	Pallister	et	al.,	2013).	To	144	

ensure	that	the	eruptive	records	are	complete	and	not	affected	by	recording	biases	145	

(Coles	and	Sparks,	2006;	Deligne	et	al.,	2010),	we	review	patterns	of	eruptive	146	

activity	only	back	to	1800	C.E.	(Fig.	2),	as	prior	to	this	date	each	of	the	individual	147	



eruptive	records	is	assumed	to	be	incomplete.	However,	recent	advances	in	the	148	

ability	to	monitor	and	observe	eruptive	activity	(Cashman	and	Sparks,	2013)	mean	149	

that	much	of	the	data	derive	from	eruptive	activity	in	the	late	20th	and	early	21st	150	

centuries.	Data	sources	include	eruption	databases	(Siebert	et	al.,	2010;	Ogburn,	151	

2013),	peer-reviewed	publications	(e.g.,	journal	articles,	professional	publications),	152	

and	observatory	data	and	databases	of	volcanic	unrest	(e.g.,	WOVOdat;	153	

http://www.wovodat.org/).	Detailed	profiles	for	the	volcanoes	can	be	found	in	the	154	

supplementary	material.	155	

	156	

Data	are	collated	for	two	purposes:	(i)	as	empirical	evidence	of	long-term	157	

behaviours	at	dome-building	volcanoes,	and	(ii)	as	a	semi-quantitative	measure	of	158	

their	behaviour.	Empirical	evidence	includes	observations	of	phenomenological	159	

behaviour,	magmatic	degassing,	and	the	bulk	rock	characteristics	of	erupted	160	

products.	In	contrast	to	focussed	studies	at	the	individual	volcanoes,	we	do	not	use	161	

the	observations	as	direct	evidence	of	specific	magmatic	processes	or	characteristics	162	

of	the	respective	magmatic	systems.	Instead,	we	use	them	only	to	subdivide	163	

individual	volcanoes	into	groups	that	reflect	their	long-term	eruptive	behaviour.	We	164	

then	examine	geophysical	(seismicity	and	deformation)	and	petrological	165	

observations	within	groups	to	compare	the	behaviour	of	the	magmatic	systems	166	

within	and	between	volcano	groups.	167	

	168	

2.1.	Phenomenological	behaviour	169	



Dome-building	volcanoes	exhibit	a	range	of	effusive	and	explosive	behaviours	170	

(Newhall	and	Melson,	1983;	Sparks,	1997;	Ogburn	et	al.,	2015).	By	definition,	171	

however,	the	main	eruptive	activity	involves	protracted	lava	dome	extrusion,	with	172	

extrusive	phases	that	may	last	from	months	to	many	years;	our	reference	volcanoes	173	

have	also	experienced	periods	of	quiescence	of	months	to	decades.	During	times	of	174	

activity,	lava	discharge	rates	can	be	estimated	from	ground-based	and	satellite-175	

based	techniques	(e.g.,	Sparks,	1997;	van	Manen	et	al.,	2010)	and	used	to	176	

characterise	the	intensity	of	dome	growth	phases.	The	effusion	rate,	together	with	177	

the	magma	viscosity,	determines	whether	lava	moves	away	from	the	vent	as	a	lava	178	

flow	or	builds	either	an	ever-larger	dome	and	talus	apron	or	a	near-solid	lava	spine	179	

(Watts	et	al.,	2002;	Cashman	et	al.,	2008).	Where	lava	accumulates	over	the	vent,	the	180	

increase	in	magma-static	head	creates	a	backpressure	that	can	resist	extrusion	and	181	

influence	the	longer-term	dynamics	of	the	magmatic	system	(Stasiuk	et	al.	1993;	182	

Scandone	et	al.,	2007).	183	

	184	

Phases	of	extrusive	activity	can	be	interspersed	with	more	explosive	activity,	185	

including	Strombolian,	Vulcanian	and	sub-Plinian	eruption	styles.	The	intensity	and	186	

explosivity	of	eruptive	activity	can	be	characterised	using	phenomenological	187	

observations	such	as	ash	column	height,	pyroclastic	run-out,	tephra	fall	deposit	188	

volumes,	some	of	which	can	serve	as	proxies	for	magnitude,	intensity	and	explosion	189	

style	(Newhall	and	Self,	1982).	Infrequently,	dome-building	volcanoes	also	have	190	

large-magnitude	explosions,	including	Plinian	eruptions	and	lateral	blasts	(Ogburn	191	

et	al.,	2015).	192	



	193	

2.2.	Magmatic	degassing	194	

As	magma	ascends	through	the	crust,	volatiles	exsolve	and	rise	to	the	surface	195	

(Wallace,	2003;	2005;	Oppenheimer	et	al.,	2011).	The	most	abundant	volatile	196	

species	are	H20	and	CO2.	SO2,	however,	is	the	most	commonly	monitored	volatile	197	

because	it	is	a	trace	gas	in	the	atmosphere	and	thus	its	concentration	can	be	readily	198	

measured	using	remote	sensing	techniques	(Rose	et	al.,	2000;	Edmonds	et	al.,	2003;	199	

Galle	et	al.,	2003;	Carn	et	al.,	2013).	SO2	fluxes	are	quantified	using	ultraviolet	200	

absorption	spectra	and	measured	in	tonnes	per	day	(t/d);	some	data	for	the	last	few	201	

decades	are	sporadically	available	for	most	of	the	study	volcanoes.	202	

	203	

Prior	to	the	development	of	ultraviolet	spectroscopic	techniques,	gas	fluxes	were	204	

estimated	by	sampling	fumarolic	gases	(Giggenbach,	1996).	Introduction	of	the	205	

correlation	spectrometer	(COSPEC)	in	the	1970s	allowed	SO2	flux	measurements,	206	

although	early	measurements	were	prone	to	large	errors	(Oppenheimer	et	al.,	207	

2011).	More	recently,	fluxes	have	been	estimated	from	differential	optical	208	

absorption	spectroscopy	(DOAS;	Platt	and	Stutz,	2008).	A	major	advantage	of	this	209	

method	is	that	spatially	distributed	multi-beam	instruments	can	provide	precise	210	

estimates	for	plume	velocity,	which	significantly	reduces	measurement	errors	of	211	

flux	(Oppenheimer	et	al.,	2011,	and	references	within).	Importantly,	however,	212	

measurements	are	restricted	to	sunlight	hours	only	and	the	quality	of	gas	data	from	213	

all	remote	sensing	techniques	depends	on	meteorological	conditions	(e.g.,	low	214	

humidity	and	no	clouds).	215	



	216	

Terrestrial-based	spectroscopic	measurements	are	not	feasible	for	measuring	217	

volatile	emissions	in	major	explosive	events	because	abundant	ash	masks	the	218	

signals.	Consequently,	the	mass	of	gas	released	during	large	eruption	events	is	219	

measured	using	satellite-based	techniques	and	then	converted	to	fluxes	(Carn	and	220	

Prata,	2010;	Carn	et	al.,	2013).	221	

	222	

2.3.	Bulk	rock	observations	223	

In	our	data	set,	the	products	of	dome	building	volcanoes	range	in	composition	from	224	

basaltic	andesite	(∼52-57	wt.%	SiO2)	to	dacite	(∼64-69	wt.%	SiO2;	Table	1).	Whilst	225	

it	is	impossible	to	observe	the	long-term	dynamics	of	magmatic	systems	directly,	226	

macroscopic	observations	and	bulk	rock	analysis	can	be	used	to	interpret	the	227	

compositional,	and	potentially	the	physical,	structure	of	magmatic	systems	(e.g.,	228	

Barclay	et	al.,	2010;	Larsen	et	al.,	2010;	Coombs	et	al.,	2013;	Scott	et	al.,	2013;	229	

Turner	et	al.,	2013).	230	

	231	

Magma	rheology	is	a	major	determinant	of	physical	behaviour,	particularly	at	232	

shallow	depths	where	flow	at	the	surface	may	be	inhibited	by	high	yield	strength.	233	

Magma	is	a	multiphase	system	and	consequently	its	rheology	is	complex	(Mader	et	234	

al.,	2013).	Rheology	is	strongly	controlled	by	the	crystallinity	of	the	magmas,	which	235	

is	typically	high	in	intermediate	arc	magmas.	Crystallization	is	further	increased	by	236	

syn-ascent	decompression	and	degassing	and	is	thus	modulated	by	eruption	rate,	237	

the	pressure	of	shallow	storage	prior	to	eruption,	the	bulk	composition	of	the	238	



magma	and	kinetic	factors	associated	with	bubble	dynamics	(Jaupart	and	Vergniolle,	239	

1989;	Geschwind	and	Rutherford,	1995;	Nakada	and	Motomura,	1999;	Hammer	et	240	

al.,	2000;	Cashman	and	McConnell,	2005;	Divoux	et	al.,	2009;	Wright	et	al.,	2012).	241	

Exsolved	gas	can	also	lead	to	marked	rheological	variations	as	functions	of	bubble	242	

size	distribution	and	bubble	content	(Manga	et	al.,	1998;	Mader	et	al.,	2013).	The	243	

interplay	between	magma	ascent,	decompression,	gas	exsolution,	crystallization	and	244	

rheology	can	lead	to	complex	episodic	behaviours	(e.g.,	Jaupart	and	Allegre,	1991;	245	

Melnik	and	Sparks,	1999;	Michaut	et	al.	2013).	246	

	247	

2.4.	Geophysical	observations	248	

For	each	volcano	we	report	common	geophysical	observations;	for	consistency,	we	249	

omit	specialised	observations	(e.g.,	strain	meters,	broadband	seismicity)	made	at	250	

only	one	or	two	volcanoes.	Geophysical	monitoring	observations	are	susceptible	to	251	

spatial	and	temporal	biases	associated	with	network	capacities	and	technological	252	

constraints	at	volcano	observatories	(Sparks	et	al.,	2012).	Therefore,	it	is	important	253	

to	understand	these	biases	and	thus	the	robustness	and	validity	of	comparing	254	

records.	Spatial	biases	arise	from	variations	in	monitoring	capacities	due	to	both	255	

resource	availability	and	accessibility.	Temporal	biases	are	associated	with	256	

advances	in	technology	that	improve	observation	thresholds	and	the	precision	of	257	

measurements.	These	are	discussed	in	more	detail	with	reference	to	the	particular	258	

observables.	259	

	260	

2.4.1.	Seismicity	261	



Volcanic	seismicity	can	be	categorised	either	by	its	physical	cause,	if	occurring	at	the	262	

surface	(e.g.,	rockfalls,	lahars,	pyroclastic	flows,	etc.),	or	its	waveform	and	frequency	263	

content	if	originating	from	within	the	crust	(e.g.,	high	or	low-frequency	signals;	264	

Chouet,	1996;	Neuberg,	2000;	McNutt,	2005;	Chouet	and	Matoza,	2013).	High-265	

frequency	(volcano-tectonic)	events	have	recognisable	P	and	S	wave	first	arrivals	266	

and	are	attributed	to	brittle	fracturing	related	to	opening	of	new	pathways	for	either	267	

magma	or	magmatic	fluids	(Kilburn,	2003).	Low-frequency	(long-period	and	hybrid)	268	

events	are	associated	with	movement	of	magma	and	magmatic	fluids	(McNutt,	269	

2005).	Seismicity	is	most	commonly	associated	with	eruptive	activity	but	is	also	270	

observed	during	periods	of	quiescence,	that	is,	when	a	volcano	is	in	a	non-eruptive	271	

state,	and	can	be	diagnostic	of	incipient	unrest	(Phillipson	et	al.,	2013)	or	post-272	

eruptive	tectonic	stress	recovery	(e.g.,	Barker	and	Malone,	1991).	273	

	274	

Although	seismicity	can	be	characterised	using	a	range	of	metrics,	we	focus	on	the	275	

number	of	events	(daily	counts)	as	this	is	the	most	commonly	recorded	observation	276	

across	the	volcanoes	in	the	dataset.	We	do	not	compare	absolute	numbers	of	seismic	277	

events	or	cumulative	seismic	moment	between	volcanoes	due	to	recording	biases	278	

associated	with	variations	in	network	capacities	and	sensitivities	(e.g.,	number	of	279	

and	type	of	instruments).	Instead	we	compare	patterns	of	total	seismicity	and	the	280	

relative	frequency	of	different	types	of	events,	primarily	long-period	and	volcano-281	

tectonic	earthquakes.	282	

	283	

2.4.2.	Deformation	284	



The	episodic	and	sometimes	repetitive	nature	of	eruptive	activity	at	many	dome-285	

building	volcanoes	commonly	manifests	as	time-varying	deformation	of	the	crust	286	

that	can	be	monitored	at	the	surface	using	geodetic	techniques.	Great	variability	in	287	

instrumentation	and	network	design	in	the	near-field	monitoring	of	ground	288	

deformation,	however,	makes	direct	comparisons	difficult.	For	this	reason,	we	focus	289	

only	on	far-field	deformation	(>	5	km	from	the	vent).	These	data	also	provide	useful	290	

constraints	on	deeper	magmatic	processes.	Far-field	deformation	can	be	measured	291	

by	geodetic	networks	(using	GPS),	although	these	measurements	require	ground-292	

based	support	and	are	restricted	to	only	a	few	of	the	volcanoes	in	our	dataset.	On	293	

the	other	hand,	Interferometric	Synthetic	Aperture	Radar	(InSAR)	techniques	using	294	

satellite-based	instruments	provide	a	global	approach	for	observing	far-field	295	

deformation	(Biggs	et	al.,	2014).	By	combining	observations	from	these	two	296	

methods	we	compare	patterns	of	deformation	(i.e.	whether	the	volcano	is	inflating,	297	

deflating	or	neither)	between	different	volcanoes	and	relate	deformation	behaviour	298	

to	eruptive	and	non-eruptive	phases	of	activity.	299	

	300	

2.5.	Petrology	301	

Petrologic	data	provide	information	on	the	homogeneity	of	the	magmatic	system,	302	

temporal	changes	of	magma	composition	and	the	extent	to	which	eruptive	activity	is	303	

influenced	by	the	ascent	of	discrete	magma	batches.	Of	particular	interest	is	304	

evidence	for	the	interaction	of	different	magmas,	which	can	occur	at	a	range	of	305	

scales.	Macroscopic	evidence	for	magma	mingling	includes	enclaves	or	306	

compositional	banding	in	erupted	products.	Microscopic	details	of	geochemical	307	



interactions	provide	information	on	the	nature	and	timing	of	mingling	events.	308	

Analysis	of	individual	crystals	and	their	melt	inclusions	provides	information	on	309	

both	intrinsic	and	extrinsic	properties	(e.g.,	temperature,	pressure	and	volatile	310	

inventories)	of	magma	storage	regions	(e.g.,	Nakamura,	1995;	Zellmer	et	al.,	2003a;	311	

Dirksen	et	al.,	2006;	Humphreys	et	al.,	2006;	Costa	et	al.,	2013).	Finally,	petrological	312	

analyses	and	U-series	geochemistry	can	constrain	the	timescales	of	magmatic	313	

processes	(e.g.,	Volpe	and	Hammond,	1991;	Zellmer	et	al.,	2003b;	Cooper	and	Reid,	314	

2008;	Dosseto	et	al.,	2008;	Claiborne	et	al.,	2010)	that	control	and	sustain	eruptive	315	

activity	at	dome-building	volcanoes.	Quantification	of	groundmass	characteristics	316	

(crystallinity,	crystal	size	and	shape)	can	further	constrain	rates	of	magma	ascent	to	317	

the	surface	(e.g.,	Hammer	et	al.,	2000;	Toramaru	et	al.	2008;	Wright	et	al.,	2012).		318	

	319	

3.	Patterns	of	eruptive	activity	at	dome-building	volcanoes	320	

	321	

We	identify	in	our	dataset	two	types	of	long-term	behaviour	defined	by	the	relative	322	

time	a	volcano	remains	in	a	state	of	eruption	or	repose	(i.e.	non-eruption):	(1)	323	

activity	is	episodic	when	time	scale	of	eruption	is	much	less	than	the	time	scale	of	324	

repose;	and	(2)	activity	is	persistent,	when	the	time	scale	of	eruption	is	comparable	325	

to	that	of	repose	(Fig.	3a).	Identification	of	episodic	and	persistent	regimes	326	

represents	the	first	sub-level	in	our	hierarchical	construct	of	historical	dome-327	

building	volcanism	(Fig.	4).	328	

	329	



Episodic	and	persistent	behaviour	can	be	manifested	over	different	timescales	(Fig.	330	

4)	and,	over	time,	individual	volcanoes	can	show	both	types	of	behaviour	(Fig.	3c).	331	

Over	the	examined	time	period	of	the	past	200	years,	for	example,	many	dome-332	

building	volcanoes	are	characterised	by	episodic	behaviour;	however,	within	that	333	

broad	description,	some	have	remained	in	a	persistent	regime	for	multiple	decades.	334	

We	characterise	these	volcanoes	as	belonging	to	a	mixed	regime.	Over	very	long	335	

time	periods,	all	the	volcanoes	in	our	sample	can	be	viewed	as	mixed.		336	

	337	

Patterns	of	SO2	degassing	also	provide	additional	insight	into	long-term	patterns	of	338	

volcanic	activity.	The	largest	volumes	of	SO2	emissions	are	always	associated	with	339	

major	explosive	events	(e.g.,	Carn	and	Prata,	2010;	Werner	et	al.,	2013).	Two	340	

patterns	of	less	energetic	degassing	can	be	defined	as:	(1)	SO2	flux	that	is	closely	341	

correlated	with	eruptions	(Fig.	3b)	and	(2)	degassing	that	is	not	correlated	with	342	

eruptive	activity	(Fig.	3a).	Correlated	degassing	is	common	at	volcanoes	in	an	343	

episodic	regime;	here	both	gas	and	magma	fluxes	decrease	with	time	after	an	initial	344	

(often	explosive)	maximum	(Fig.	5a).	Poor	correlation	between	degassing	and	345	

eruptive	activity,	in	contrast,	is	typical	of	persistent	activity	(Fig.	5b).	The	346	

correlation	of	degassing	patterns	with	eruptive	behaviour	suggests	that	magmatic	347	

degassing	constitutes	an	important	distinction	between	persistent	and	episodic	348	

regimes	(e.g.,	Whelley	et	al.,	2015).	349	

	350	

Finally,	we	use	differences	in	degassing	behaviour	to	distinguish	two	states	of	351	

repose:	(1)	inter-eruptive	repose	separates	episodic	eruptions	and	is	characterised	352	



by	negligible	degassing	(Fig	3a;5a);	and	(2)	intra-eruptive	repose	occurs	in	the	353	

persistent	regime	and	is	characterised	by	sustained	degassing	(Fig	3b;5b).	We	also	354	

identify	a	non-eruptive	degassing	regime	to	describe	dome-building	volcanoes	that	355	

remain	in	a	state	of	long-term	repose	(~decades)	characterised	by	low	levels	of	356	

persistent	degassing.	357	

	358	

3.1.	Episodic	regime	359	

Volcanoes	in	an	episodic	regime	are	characterised	by	periods	of	eruptive	activity	360	

separated	by	much	longer	periods	of	repose.	The	onset	of	eruptive	episodes	is	361	

explosive,	with	high	magma	discharge	rates.	Both	magma	discharge	rates	and	SO2	362	

fluxes	decrease	with	time	during	eruptive	periods	(e.g.,	Fig.	6).	During	eruptive	363	

periods,	the	later	stages	of	activity	are	typically	characterised	by	low	extrusion	rates	364	

and	associated	extensive	syn-eruptive	crystallisation	that	combine	to	produce	lava	365	

spines	(e.g.,	Watts	et	al.,	2002;	Cashman	et	al.,	2008).	We	distinguish	two	different	366	

timescales	for	episodic	activity	in	historical	records	(Fig	4):	(1)	volcanoes	where	367	

eruptive	episodes	last	several	years,	and	(2)	volcanoes	where	eruptive	episodes	last	368	

a	few	months	at	most.	These	two	subgroups	can	be	further	distinguished	by	the	369	

homogeneity	or	heterogeneity	of	erupted	magma	compositions.	370	

	371	

3.1.1.	Eruptive	episodes	lasting	years	372	

Two	volcanoes	in	this	review	have	experienced	episodic	activity	lasting	several	373	

years	(Fig.	2;	UNZ,	PEL).	In	both	cases,	lava	compositions	are	broadly	homogeneous.	374	

The	duration	of	inter-eruptive	periods	of	repose	is	multiple	decades	or	longer.	375	



	376	

(a) Mount	Unzen,	Japan	(UNZ),	is	a	complex	dacitic	volcano	that	last	erupted	377	

near-continuously	from	1991-1995	(Fig.	2).	No	previous	historic	activity	is	378	

known	although	a	major	sector	collapse	event	of	an	older	dome	occurred	in	379	

1792	(Ui	et	al.,	2000).	Between	1991	and	1995,	the	composition	of	eruptive	380	

products	was	~65	wt.%	SiO2	(Nakada	and	Motomura,	1999)	and	the	average	381	

lava	effusion	rate	was	~1	m3s−1,	with	higher	rates	(∼4-6	m3s−1)	during	the	382	

eruption	onset.	Extrusion	rates	generally	diminished	with	time,	although	a	383	

secondary	peak	was	observed	in	1993	(Nakada	et	al.,	1999;	Fig.	6).		SO2	384	

fluxes	averaged	137	t/d,	were	correlated	with	extrusion	rate	and	diminished	385	

soon	after	eruptive	activity	ceased	(Hirabayashi	et	al.,	1995).	386	

	387	

(b) Mont	Pelée,	Martinique	(Fig.	1),	is	an	andesitic	volcano	that	has	erupted	388	

infrequently	(Fig.	2).	The	best-recorded	eruptive	activity	occurred	in	the	389	

early	part	of	the	20th	century,	between	1902-05	and	1929-32	(Lacroix,	1904;	390	

Perret,	1937;	Tanguy,	1994).	During	both	periods,	lava	fluxes	decreased	from	391	

>10	m3s−1	to	∼1	m3s−1	(Tanguy,	2004),	with	later	stages	characterised	by	392	

spine	extrusion	(Lacroix,	1904;	Perret,	1937).	The	composition	of	eruptive	393	

products	from	Mont	Pelée	is	quite	homogeneous	at	62	wt.%	(Fichaut	et	al.,	394	

1989b;	Gourgaud	et	al.,	1989;	Smith	and	Roobol,	1990).	395	

	396	

3.1.2.	Eruptive	episodes	lasting	months	397	



Two	volcanoes	in	this	review	have	experienced	eruptive	episodes	lasting	a	few	398	

months	(Fig.	2;	RED,	AUG).	In	contrast	to	the	volcanoes	in	the	previous	group,	the	399	

duration	of	inter-eruptive	periods	of	repose	is	several	years	to	a	few	decades.	400	

Additionally,	lavas	of	different	composition	are	erupted	contemporaneously.		401	

	402	

(c) Mount	Redoubt,	USA	(RED),	is	an	andesitic	volcano	that	has	erupted	403	

intermittently	on	four	separate	occasions	since	1902	(Fig.	2).	The	most	404	

recent	eruptive	episodes	have	been	in	1989-90	and	2009,	each	lasting	for	405	

several	months	(Miller	and	Chouet,	1994;	Bull	and	Buurman,	2013).	During	406	

each	eruptive	episode	eruptive	products	ranged	from	57	to	63	wt.%	SiO2,	407	

with	the	later	stages	involving	the	more	silicic	lava	(Nye	et	al.,	1994;	Coombs	408	

et	al.,	2013).	SO2	degassing	is	highly	correlated	with	periods	of	eruptive	409	

activity.	In	1989	-1990,	extrusion	rates	varied	from	2.1	to	26	m3s−1,	with	410	

average	dome	growth	occurring	at	~5.8	m3s−1	(Miller,	1994).	Similar	411	

extrusion	rates	were	observed	in	2009	(2.2	-35	m3s−1)	although	the	average	412	

rate	was	slightly	higher	at	∼9.5	m3s−1	(Diefenbach	et	al.,	2013).	In	both	cases	413	

the	initial	activity	was	the	most	explosive	and	the	extrusion	rate	declined	414	

during	eruptive	activity	(Miller,	1994;	Diefenbach	et	al.,	2013).	Initial	415	

explosive	activity	in	2009	was	associated	with	the	largest	SO2	fluxes	(∼3000	416	

to	∼17000	t/d).	Subsequent	activity	involved	more	continuous	extrusion	417	

with	SO2	fluxes	≤3000	t/d	(Hobbs	et	al.,	1991;	Casadevall	et	al.,	1994;	Werner	418	

et	al.,	2013).	In	both	1990	and	2009,	it	took	several	years	for	SO2	fluxes	to	419	



return	to	undetectable	levels	after	eruptive	activity	ceased	(Doukas,	1995;	420	

Werner	et	al.,	2013).	421	

	422	

(d) Mount	Augustine,	USA	(AUG),	is	an	andesitic	volcano	that	has	had	nine	known	423	

eruptive	episodes	since	1812,	with	the	most	recent	in	1976,	1986	and	2006	424	

(Fig	2),	each	lasting	for	several	months	(Swanson	and	Kienle,	1988;	Power	et	425	

al.,	2006;	Power	and	Lalla,	2010).	The	composition	of	the	erupted	magma	has	426	

ranged	from	56	to	64	wt.%	SiO2,	with	more	silicic	magma	preferentially	427	

erupted	later	in	each	eruptive	episode	(Harris,	1994;	Roman	et	al.,	2006;	428	

Larsen	et	al.,	2010).	During	the	2006	eruptive	activity,	magma	fluxes	varied	429	

from	2	to	22	m3s−1	(Coombs	et	al.,	2010).	Notably,	in	contrast	to	other	430	

volcanoes	in	episodic	regimes,	the	final	stages	of	eruptive	activity	at	431	

Augustine	in	2006	were	characterised	by	elevated	discharge	rates	and	the	432	

formation	of	lava	flows,	although	discharge	rates	were	still	lower	than	at	the	433	

onset	of	eruptive	activity	(Coombs	et	al.,	2010).	Magmatic	degassing	is	434	

correlated	with	eruptive	activity,	with	the	largest	fluxes	commonly	435	

associated	with	explosive	activity	(Stith	et	al.,	1978,	Rose	et	al.,	1988;	McGee	436	

et	al.,	2010).	In	2006,	however,	the	highest	SO2	fluxes	(∼9000	t/d)	were	437	

associated	with	a	brief	hiatus	in	eruptive	activity,	although	SO2	fluxes	were	438	

high	(∼3000	t/d)	throughout	the	eruptive	episode	(McGee	et	al.,	2010),	and	it	439	

took	1-2	years	after	the	end	of	eruptive	episodes	in	1986	and	2006	for	SO2	440	

fluxes	to	return	to	undetectable	levels	(Symonds	et	al.,	1990;	Doukas,	1995;	441	

McGee	et	al.,	2010).	442	



	443	

3.2.	Persistent	regime	444	

We	identify	eight	volcanoes	in	this	review	that	have	remained	in	a	persistent	regime	445	

for	decades	or	longer.	Volcanoes	in	a	persistent	regime	exhibit	broadly	consistent	446	

behaviour	associated	with	stable	long-term	lava	fluxes.	For	example,	although	rates	447	

of	lava	effusion	at	Bezymianny,	Kamchatka,	have	varied	over	the	short	term,	they	448	

have	been	approximately	constant	over	the	past	several	decades	(Fig.	5).	The	449	

eruptive	activity	of	an	individual	volcano	can	also	show	‘typical’	(repeatable)	450	

patterns	of	behaviour,	as	illustrated	by	Santiaguito,	Guatemala,	where	typical	451	

behaviour	comprises	“small	to	moderate	explosions	of	steam	and	ash,	small	452	

pyroclastic	flows...	and	effusion	of	blocky	lava	domes	and	flows”	(Scott	et	al.,	2012).	453	

Typical	intermittent	behaviour	at	Merapi,	Indonesia,	in	contrast,	is	characterised	by	454	

eruptive	activity	that	is	“low	in	explosivity	with	VEI-3	or	less	...	[that]	involve	the	455	

formation	of	a	lava	dome”	(Ratdomopurbo	et	al.,	2013).	456	

	457	

We	distinguish	two	different	variants	of	long-term	persistent	behaviour	(Fig.	4).	458	

Firstly,	there	are	volcanoes	that	have	remained	in	a	persistent	regime	at	least	the	459	

19th	century.	These	volcanoes	produce	lavas	with	an	approximately	constant	bulk	460	

composition.	Secondly,	there	are	volcanoes	that	have	entered	a	persistent	regime	461	

following	a	long	period	of	in	a	state	of	repose.	Volcanoes	in	this	group	typically	have	462	

bulk	compositions	that	show	a	decrease	in	SiO2	content	with	time.	463	

	464	

3.2.1.	Long-term	persistent	regimes	465	



Four	of	the	dome-building	volcanoes	in	this	study	have	been	in	a	persistent	regime	466	

throughout	the	19th,	20th	and	21st	centuries;	these	volcanoes	are	characterised	by	467	

frequent,	intermittent	phases	of	dome-growth	(Fig.	2;	MER,	COL,	LAS,	SHI).	The	style	468	

of	eruptive	activity	is	generally	consistent	through	time	and	characterised	by	469	

definable	‘typical’	behaviour,	except	for	rare	large-magnitude	explosions	(Fig.	2).	470	

Interestingly,	these	explosive	events	commonly	involve	magma	that	is	more	mafic	471	

than	erupted	during	the	effusive	phases.	Activity	at	each	volcano	is	described	in	472	

detail	below.	473	

	474	

(a) Merapi,	Indonesia	(MER),	is	a	basaltic	andesite	volcano	that	has	been	in	an	475	

eruptive	state	every	few	years	since	at	least	the	18th	century.	Eruptive	476	

activity	is	characterised	by	minor	explosions	associated	with	the	extrusion	of	477	

viscous	lava	domes	and	coulées	that	can	collapse	to	form	block-and-ash	478	

pyroclastic	flows	(Voight	et	al.,	2000).	Lava	extrusion	rates	are	479	

approximately	constant	over	historical	records	at	∼0.5	m3s-1	(Siswowidjoyo	480	

et	al.,	1995).	Persistent	effusive	activity	has	been	punctuated	by	at	least	two	481	

major	explosions	that	have	produced	high-energy	pyroclastic	density	482	

currents	(Surono	et	al.,	2012).	The	bulk	rock	lava	composition	ranges	from	483	

52	to	56	wt.%	SiO2	(Andreastuti	et	al.,	2000;	Gertisser	and	Keller,	2003)	and	484	

shows	no	temporal	trend,	although	explosive	events	appear	to	involve	deeply	485	

sourced,	volatile-rich	magmas	(Costa	et	al.,	2013),	which	may	be	more	mafic	486	

(Gertisser	and	Keller,	2003).	SO2	degassing	is	continuous	with	fluxes	between	487	

50	and	250	t/d	(Humaida,	2008),	although	instantaneous	fluxes	can	be	much	488	



larger	(∼10,000’s	t/d)	during	major	explosive	events	(Surono	et	al.,	2012).	489	

Importantly,	SO2	fluxes	and	eruptive	activity	appear	decoupled,	with	SO2	flux	490	

peaks	observed	during	inter-eruptive	periods,	and	sometimes	associated	491	

with	ash	venting	(Ratdomopurbo	et	al.,	2013).	492	

	493	

(b) Colima,	Mexico	(COL),	is	an	andesite	volcano	that	has	been	erupting	494	

intermittently	since	the	18th	century.	Periods	of	intra-eruptive	repose	495	

normally	last	on	the	order	of	years,	although	longer	periods	without	496	

apparent	eruptive	activity	have	followed	major	explosive	events	in	1818	and	497	

1913.	These	longer	periods	of	repose	probably	involved	endogenous	growth	498	

below	the	crater	rim	(Robin	et	al.,	1991;	González	et	al.,	2002),	so	we	infer	499	

that	Colima	remained	in	a	persistent	regime	during	post-explosion	periods.	500	

Eruptive	activity	is	characterised	by	lava	dome	extrusion,	Vulcanian	501	

explosions	and	occasional	block-and-ash	flows	(Zobin	et	al.,	2002).	Short-502	

term	lava	effusion	rates	vary	from	<1	to	>5	m3s−1	(Varley	et	al.,	2010),	but	503	

long-term	averages	are	poorly	constrained.	The	lava	composition	ranges	504	

from	59	to	62	wt.%	SiO2	with	no	clear	temporal	trend	(Luhr	and	Carmichael,	505	

1980;	1990;	Savov	et	al.,	2008),	except	that	products	of	major	explosive	506	

events	are	more	mafic	(SiO2	=	55-58	wt.%;	Luhr	and	Carmichael,	1990;	Reubi	507	

and	Blundy,	2009;	Crummy	et	al.,	2014).	SO2	degassing	is	continuous,	with	508	

fluxes	typically	between	50	and	1000	t/d	(Casadevall	et	al.,	1984;	Engberg,	509	

2009),	although	sometimes	as	high	as	5000	t/d	(Taran	et	al.,	2002;	Varley	510	

and	Taran,	2003).	Magmatic	degassing	appears	decoupled	from	eruptive	511	



activity	(Zobin	et	al.,	2008),	but	the	largest	SO2	fluxes	are	associated	with	512	

more	explosive	events	(Taran	et	al.,	2002).	513	

	514	

(c) Lascar,	Chile	(LAS),	is	an	andesitic	volcano	that	has	been	erupting	515	

intermittently	at	yearly	to	decadal	timescales	throughout	much	of	its	history.	516	

Lava	dome	growth	has	been	confined	within	a	large	summit	crater.	Four	517	

periods	of	near-continuous	dome	growth	occurred	between	1984	and	1993;	518	

each	culminated	in	lava	dome	subsidence	and	explosive	events,	including	a	519	

Plinian	explosion	in	April	1993	(Matthews	et	al.,	1997).	Long-term	lava	520	

extrusion	rates	are	poorly	constrained	but	are	likely	to	be	<	0.1	m3s-1	521	

(Matthews	et	al.,	1997).	Since	1993,	activity	has	comprised	episodic	522	

Vulcanian	explosions	that	have	decreased	in	both	intensity	and	frequency;	523	

the	last	explosion	occurred	in	2007.	Juvenile	pyroclasts	from	1993	can	be	524	

separated	by	composition	into	two	groups:	57.6-58.7	or	60.4-61.4	wt.%	SiO2	525	

(Matthews	et	al.,	1999);	similarities	to	previously	erupted	lavas	(Deruelle,	526	

1985)	suggest	that	the	magma	composition	has	remained	constant	527	

throughout	its	history.	Lascar	has	exhibited	continuous	fumarolic	activity	528	

(Casertano,	1963;	Gardeweg	&	Medina,	1994)	with	recent	SO2	fluxes	529	

sustained	between	150	and	940	t/d	(Henney	et	al.,	2012,	Menard	et	al.,	530	

2014).	During	more	explosive	activity,	fluxes	have	reached	2300	t/d	(Andres	531	

et	al.,	1991;	Mather	et	al.,	2004).	SO2	fluxes	have	shown	an	irregular	pattern	532	

of	degassing	during	periods	of	intra-eruptive	repose	and	therefore	appear	533	

decoupled	from	magma	flux	(Menard	et	al.,	2014).	534	



	535	

(d) Shiveluch,	Russia	(SHI)	is	an	andesitic	volcano	that	has	been	erupting	536	

intermittently	since	a	major	explosive	event	in	1854.	Even	prior	to	1854,	537	

sparse	observations	suggest	that	periods	of	repose	lasted	no	more	than	a	few	538	

decades.	Recent	phases	of	eruptive	activity	have	varied	in	duration	from	539	

months	to	several	years,	and	Shiveluch	has	been	in	a	near-continuous	540	

eruptive	state	since	2000	(Belousov,	1995;	Zharinov	and	Demyanchuk,	541	

2008).	Between	1980	and	2007	the	average	lava	discharge	rate	was	∼	0.4	542	

m3s−1,	although	fluxes	fluctuated	considerably	(Zharinov	and	Demyanchuk,	543	

2008).	Explosive	activity	has	been	of	variable	magnitude,	with	major	Plinian	544	

events	in	1854	and	1964	(Belousov,	1995).	The	eruptive	products	contain	545	

56-62	wt.%	SiO2	and	show	no	temporal	trends	(Dirksen	et	al.,	2006;	546	

Humphreys	et	al.,	2006;	Gorbach	and	Portnyagin,	2011).	Fumarolic	activity	547	

has	been	sustained	throughout	both	eruptive	activity	and	intra-eruptive	548	

repose	(Belousov,	1995;	Gorelchik	et	al.,	1997;	Zharinov	and	Demyanchuk,	549	

2008),	but	SO2	fluxes	have	not	been	documented.	550	

	551	

3.2.2.	Long-duration	repose	preceding	a	long-term	persistent	regime	552	

Two	volcanoes	in	this	study	have	initiated	persistent	behaviour	after	explosive	553	

eruptions	that	followed	a	long	period	in	a	state	of	repose	(∼millennia;	Fig.	2;	SAN,	554	

BEZ).	The	onset	of	a	persistent	regime	at	these	volcanoes	is	characterised	by	Plinian	555	

and	lateral	blast	explosions.	In	contrast	to	the	previous	group,	the	most	evolved	556	



pyroclasts	in	this	group	are	associated	with	major	explosive	events;	the	SiO2	content	557	

of	subsequent	lavas	decreases	systematically	through	time.		558	

	559	

(e) Santiaguito	(Santa	Maria),	Guatemala	(SAN),	is	a	dome	complex	that	has	been	560	

active	since	1922;	effusive	activity	followed	the	Plinian	eruption	of	its	parent	561	

volcano,	Santa	Maria,	in	1902	(Rose,	1972).	Effusive	activity	has	been	nearly	562	

continuous	at	long-term	rates	of	~	0.46	m3s−1,	with	marked	fluctuations	that	563	

have	been	classified	into	eight	distinct	phases	(Rose,	1973;	Harris	et	al.,	564	

2003;	Scott	et	al.,	2013).	Each	phase	has	initiated	with	high	rates	(0.5-2.1	565	

m3s−1)	and	has	been	followed	by	low,	sustained	extrusion	rates	of	<	0.2	m3s−1	566	

(Harris	et	al.,	2003;	Ebmeier	et	al.,	2012).	The	lavas	are	dacitic	to	silicic	567	

andesite	in	composition,	with	SiO2	contents	that	have	decreased	568	

systematically	from	∼66	to	∼62	wt.%	since	1922.	SO2	degassing	is	569	

continuous	with	average	fluxes	between	80	and	120	t/d	(Andres	et	al.,	1993;	570	

Rodríguez	et	al.,	2004).	571	

	572	

(f) Bezymianny,	Russia	(BEZ),	is	an	andesite	volcano	that	has	been	erupting	573	

near-continuously	to	intermittently	since	a	lateral	blast	and	associated	sector	574	

collapse	in	1956	(Belousov	et	al.,	2007).	Between	1956	and	1977,	eruptive	575	

activity	was	limited	to	periods	of	endogenous	lava	dome	growth	associated	576	

with	sustained	fumarolic	activity	(Gorshkov,	1959;	Bogoyavlenskaya	et	al.,	577	

1985;	Belousov,	1996).	After	1977,	dome	growth	occurred	exogenously	and	578	

included	occasional	explosions	(van	Manen	et	al.,	2010).	More	recently,	579	



eruptive	phases	have	decreased	in	duration	and	have	become	increasingly	580	

explosive	(West,	2013).	The	long-term	average	extrusion	rate	was	0.6	m3s−1	581	

between	1956	and	1976	(Belousov	et	al.,	2002)	and	1993	to	2008	(van	582	

Manen	et	al.,	2010).	Since	1956	the	eruptive	products	have	become	steadily	583	

less	evolved	with	time,	varying	from	60.4	to	56.8	wt.%	SiO2	584	

(Bogoyavlenskaya	et	al.,	1985;	Turner	et	al.,	2013).	SO2	degassing	has	been	585	

sustained.		Fluxes	have	been	measured	at	140	to	280	t/d	during	three	586	

campaigns	conducted	during	periods	of	low	eruptive	activity	(Lopez	et	al.,	587	

2013).	These	measurements	are	not	sufficient	to	assess	relations	between	588	

degassing	and	magma	discharge.	589	

	590	

3.3.	Mixed	eruptive	regime	591	

Persistent	and	episodic	regimes	can	manifest	over	different	timescales	at	individual	592	

volcanoes.	Consequently,	the	historical	records	of	some	dome-building	volcanoes	593	

exhibit	patterns	of	eruptive	activity	that	are	characteristic	of	both	regimes:	they	594	

exhibit	persistent	behaviour	over	several	decades	but	are	also	characterised	by	long	595	

periods	of	inter-eruptive	repose.	We	identify	four	volcanoes	that	fit	this	category	596	

and	define	them	as	‘mixed’	regime	volcanoes	(Fig.	2;	MSH,	SHV,	TUN,	POP).	597	

	598	

The	eruptive	behaviour	at	these	volcanoes	varies	markedly,	with	persistent	activity	599	

over	short	timescales	but	episodic	activity	over	timescales	of	decades	to	centuries	600	

and	persistent	activity	over	shorter	timescales.	Mixed	activity	is	sufficiently	varied,	601	

however,	that	it	cannot	be	considered	exchangeable.	For	example,	Mount	St	Helens	602	



showed	persistent	activity	throughout	most	of	the	1980’s	with	degassing	that	was	603	

well	correlated	temporally	with	lava	extrusion.	Tungurahua,	in	contrast,	has	604	

remained	in	a	persistent	regime	since	1999,	with	degassing	that	has	been	poorly	605	

correlated	with	lava	extrusion.	A	common	observation	at	all	of	these	volcanoes,	606	

however,	is	intermittent	ash	venting.	607	

	608	

(a) Mount	St.	Helens,	USA	(MSH),	is	a	dacitic	volcano	that	has	experienced	two	609	

eruptive	episodes	in	recent	times:	1980	to	1986,	and	2004	to	2008	(Swanson	610	

and	Holcomb,	1990;	Scott	et	al.,	2008),	following	an	inter-eruptive	period	of	611	

repose	lasting	136	years	(Fig.	2).	Eruptive	activity	in	1980	initiated	with	612	

endogenous	growth	of	the	edifice	(Lipman	and	Mullineaux,	1981)	that	caused	613	

a	major	flank	collapse	accompanied	by	sub-Plinian	explosive	activity	(Voight	614	

et	al.,	1983;	Glicken,	1998).	This	was	followed	by	sub-Plinian	to	Vulcanian	615	

explosions	in	the	summer	of	1980	that	steadily	decreased	in	magnitude	and	616	

duration	(Scandone	and	Malone,	1985).	Subsequent	effusive	activity	617	

transitioned	between	discrete	and	continuous	eruptions	of	variably	618	

crystalline	lavas	(Cashman,	1992).	Between	1980	and	1986,	extrusion	rates	619	

varied	from	1.4	to	40	m3s−1,	with	a	long-term	average	of	∼	0.4	m3s−1	620	

(Anderson	and	Fink,	1990;	Swanson	and	Holcomb,	1990).	Renewed	621	

continuous	effusion	in	2004	occurred	at	rates	that	decreased	steadily	until	622	

2008,	with	a	maximum	of	<	5.9	m3s−1	and	a	long-term	average	of	0.1	m3s−1	623	

(Schilling	et	al.,	2008;	Major	et	al.,	2009).	Between	1980	and	1986	magma	624	

compositions	were	broadly	homogeneous	at	62-64	wt.%	SiO2	(Cashman,	625	



1992;	Pallister	et	al.,	1992;	Blundy	et	al.,	2008;	Pallister	et	al.,	2008).	Lavas	626	

erupted	between	2004	and	2008	were	similarly	homogenous	at	63-65	wt.%	627	

SiO2	(Blundy	et	al.,	2008;	Pallister	et	al.,	2008).	During	both	eruptive	periods,	628	

degassing	was	continuous	and	largely	coupled	with	magma	extrusion.	The	629	

largest	SO2	fluxes	were	associated	with	explosive	activity	in	the	early	1980’s,	630	

when	they	frequently	exceeded	1000	t/d	(Gerlach	and	McGee,	1994).	The	631	

lowest	SO2	fluxes	(∼70	t/d)	were	associated	with	the	dome-building	activity	632	

in	1982-86	and	2004-2008	(Gerlach	and	McGee,	1994;	Gerlach	et	al.,	2008).	633	

Following	the	cessation	of	each	eruptive	episode,	SO2	fluxes	decreased	634	

rapidly	to	negligible	levels.	In	the	1990’s,	however,	detectable	gas	emissions	635	

(Gerlach	et	al.,	2008)	were	observed	concurrently	with	elevated	shallow	VT	636	

seismicity	and	explosive	emissions	of	non-juvenile	tephra	(Mastin,	1994).	637	

	638	

(b) Soufrière	Hills	Volcano,	Montserrat	(SHV),	is	an	andesitic	volcano	that	639	

erupted	in	1995	following	several	centuries	of	no	eruptive	activity.	Since	640	

1995	it	has	exhibited	intermittent	activity	with	five	phases	of	eruptive	641	

activity	lasting	several	months	to	years	(Young	et	al.,	1998;	Sparks	and	642	

Young,	2002;	Wadge	et	al.,	2010;	2014),	with	the	last	phase	ending	in	2010.	643	

The	eruptive	activity	has	included	lava	dome	extrusion,	block-and-ash	flows	644	

and	Vulcanian	explosions;	periods	of	repose	have	been	characterised	by	ash	645	

venting	and	continuous	degassing	(Wadge	et	al.,	2014).	The	time-averaged	646	

lava	extrusion	has	been	3	m3s−1,	although	rates	exceeding	10	m3s−1	have	647	

characterised	some	phases	of	dome	extrusion	(Wadge	et	al.,	2010;	Wadge	et	648	



al.,	2014).	The	SiO2	content	of	historically	erupted	products	has	varied	from	649	

58	to	62	wt.%	(Murphy	et	al.,	2000;	Zellmer	et	al.,	2003b;	Barclay	et	al.,	2010;	650	

Christopher	et	al.,	2014).	The	average	SO2	emission	rate	from	1995	to	2010	651	

was	∼530	t/d	(Christopher	et	al.,	2010)	and	largely	decoupled	from	eruptive	652	

activity	(Christopher	et	al.,	2010;	Edmonds	et	al.,	2010;	Christopher	et	al.,	653	

2015).	Soufrière	Hills	Volcano	continues	to	degas	at	~	430	t/d	(Christopher	654	

et	al.,	2015).	During	periods	of	intra-eruptive	repose,	peaks	in	degassing	of	655	

several	thousand	t/d	have	been	associated	with	bursts	in	seismicity	(VTs)	656	

and	are	sometimes	accompanied	by	ash	venting	(Cole	et	al.,	2014).	657	

	658	

(c) Tungurahua,	Ecuador	(TUN),	erupted	in	1999	following	81	years	of	no	659	

eruptive	activity.		Slow	lava	extrusion	and	frequent	explosive	activity	during	660	

phases	of	eruptive	activity	have	limited	lava	dome	growth.	Between	1999	661	

and	2006	Tungurahua	alternated	between	explosive	(Strombolian	to	662	

Vulcanian)	eruptions	and	relatively	quiet	periods	dominated	by	ash	venting	663	

and	fumarolic	activity.	The	most	explosive	activity	occurred	during	July	and	664	

August	2006	(Arellano	et	al.,	2008),	after	which	activity	returned	to	frequent	665	

low-intensity	Strombolian	explosions	(Steffke	et	al.,	2010).	Whilst	the	magma	666	

supply	rate	has	varied	over	timescales	of	months	(Wright	et	al.,	2012),	the	667	

long-term	emission	rate	of	ash	has	been	approximately	constant	at	>0.2	668	

m3s−1,	and	possibly	>0.4	m3s−1	(Le	Pennec	et	al.,	2012).	The	eruptive	products	669	

have	compositions	of	56-59	wt.%	SiO2	and	show	no	systematic	variation	with	670	

time	or	eruptive	style	(Samaniego	et	al.,	2011),	except	that	major	explosive	671	



events	in	1866	and	2006	have	included	a	minor	dacitic	component	672	

(Samaniego	et	al.,	2011).	Between	1999	and	2006,	SO2	fluxes	varied	from	673	

several	hundred	to	thousands	of	t/d;	degassing	has	been	largely	decoupled	674	

from	eruptive	activity	(Arellano	et	al.,	2008),	although	since	2006	daily	SO2	675	

fluxes	have	decreased	and	appear	to	be	better	correlated	with	eruptive	676	

activity.	677	

	678	

(d) Popocatépetl,	Mexico	(POP),	has	experienced	several	periods	of	eruptive	679	

activity	in	the	20th	century.	Most	recently,	eruptive	activity	was	renewed	in	680	

1994	and	has	involved	repeated	periods	of	dome	growth	that	have	681	

culminated	in	explosive	eruptions	and	dome	collapse.	Extrusion	rates	have	682	

ranged	from	0.5	to	4.1	m3s−1	during	dome-growth	in	1996	and	1997;	the	683	

long-term	average	has	been	0.24	m3s−1	(Delgado-Granados	et	al.,	2001).	Prior	684	

to	1995,	Popocatépetl	last	erupted	between	1920	and	1927	(Delgado-685	

Granados	et	al.,	2001)	followed	by	several	decades	of	minor	degassing	and	686	

ash	venting	(Brennan,	2007).	Pyroclasts	erupted	between	1996	and	1998	687	

ranged	in	bulk	composition	from	∼	59	to	64	wt.%	SiO2	(Athanasopoulos,	688	

1997;	Straub	and	Martin-Del	Pozzo,	2001),	with	all	compositions	erupted	689	

contemporaneously	(Witter	et	al.,	2005).	In	1994,	average	SO2	fluxes	were	690	

several	thousand	t/d.	Similarly	high	SO2	fluxes	(30,000-50,000	t/d)	marked	691	

explosive	activity	between	1996	and	1998	(Goff	et	al.,	1998;	Delgado-692	

Granados	et	al.,	2001).	DOAS	measurements	of	the	plume	in	2006	provide	an	693	



average	flux	of	2450	t/d,	with	large	daily	variations	not	always	associated	694	

with	eruptive	activity	(Grutter	et	al.,	2008).	695	

	696	
3.4.	Non-eruptive	degassing	regime	697	

At	volcanoes	that	have	remained	in	a	persistent	regime	throughout	the	20th	and	21st	698	

centuries	(section	3.1.1),	fumarolic	activity	may	be	sustained	during	periods	of	699	

repose	lasting	years	or	even	decades	(e.g.,	Lascar;	Gardeweg	&	Medina,	1994).	One	700	

volcano	in	our	database	has	not	erupted	during	the	20th	and	21st	centuries	but	has	701	

exhibited	sustained	and	persistent	degassing	of	SO2.	702	

	703	

(a) Kudryavy	(Moyorodake/	Medvezhia),	Russia	(KUD),	is	a	basaltic	andesite	704	

volcano	that	has	been	in	a	persistent	state	of	high	temperature	fumarolic	705	

degassing	and	phreatic	activity	since	its	last	magmatic	eruption	in	1883	706	

(Fischer	et	al.,	1998;	Korzhinsky	et	al.,	2002).	The	only	measurements	come	707	

from	a	single	campaign	in	1995,	which	measured	SO2	fluxes	of	73	±15	t/d	708	

(Fischer	et	al.,	1998).		709	

	710	
4.	Magmatic	behaviour	in	persistent	and	episodic	regimes	711	

	712	

Geochemical	analysis	of	erupted	products	and	geophysical	observations	can	provide	713	

semi-empirical	evidence	for	different	magmatic	processes.	We	summarise	these	714	

data	for	the	fifteen	dome-building	volcanoes,	with	a	particular	focus	on	systematic	715	

variations	in	the	behaviour	of	volcanoes	in	the	different	regimes.	716	

	717	



4.1.	Interaction	of	magmas	718	

Evidence	of	mixing	and	mingling	between	different	batches	of	magma	are	observed	719	

in	all	14	volcanoes	in	our	database	that	have	erupted	in	the	20th	century	(Table	2	720	

and	references	therein).	Different	magma	batches	typically	vary	in	composition,	721	

although	interactions	are	also	observed	between	magmas	or	melts	that	are	similar	722	

in	composition	but	differ	in	temperature	and	crystallinity	(Cashman	and	Blundy,	723	

2013;	Costa	et	al.,	2013;	Troll	et	al.,	2013).	Evidence	for	magma	interaction	over	724	

short	timescales	(days	to	years)	is	ubiquitous	and	includes:	(1)	disequilibrium	725	

mineral	assemblages;	(2)	disequilibria	between	mineral	assemblages	and	matrix	726	

glass;	and	(3)	phenocryst	zoning	(Table	2).	Zoning	patterns,	in	particular,	provide	727	

evidence	that	magma	mixing	is	sustained	over	a	range	of	times.	Discrete	magma	728	

mixing	events	may	be	associated	with	single	explosive	events	(Pallister	et	al.,	2008;	729	

Samaniego	et	al.,	2011;	Scott	et	al.,	2013)	or	individual	phases	of	effusive	activity	730	

lasting	months	(Dirksen	et	al.,	2006).	Frequent	and	near-continuous	magma	mixing	731	

may	accompany	sustained	lava	effusion	(Nakamura,	1995;	Barclay	et	al.,	2010;	732	

Turner	et	al.,	2013).	733	

	734	

The	degree	of	mixing	ranges	from	contemporaneous	eruption	of	different	magma	735	

compositions	to	the	eruption	of	lavas	that	are	homogeneous	in	bulk	composition	but	736	

heterogeneous	on	a	thin	section	scale.	Evidence	for	incomplete	mixing	includes	737	

banded	lava	or	pumice,	or	mafic	enclaves	in	more	silicic	host	lavas.	Where	738	

incomplete	mixing	is	observed,	historical	activity	tends	to	be	episodic	with	739	

moderate	to	long	periods	of	inter-eruptive	repose.	Persistent	activity,	in	contrast,	740	



tends	to	produce	homogeneous	lavas;	here	evidence	for	magma	mixing	is	preserved	741	

only	at	the	micro-scale,	in	melt	inclusions,	disequilibrium	mineral	assemblages,	742	

polymodal	mineral	compositions,	and	phenocryst	zonation	(Table	2).	743	

	744	

4.2.	Geophysical	observations	745	

4.2.1.	Seismicity	746	

Similar	patterns	of	seismicity	are	observed	across	all	the	volcanoes	in	this	review,	747	

with	no	apparent	correlation	with	eruptive	regime.	Most	volcanic	earthquakes	occur	748	

prior	to	and	during	eruptive	activity.	Renewed	eruptive	activity	is	generally	749	

preceded	by	elevated	VT	seismicity,	with	elevated	LP	seismicity	immediately	prior	750	

to	eruption	initiation.	Levels	of	LP	seismicity	are	highest	at	volcanoes	in	persistent	751	

regimes	where	degassing	rates	are	high	(e.g.,	Lascar,	Popocatépetl;	Asch	et	al.,	752	

1996).	Hybrid	events	(LP	seismicity	with	clear	P	&	S	wave	arrivals)	are	commonly	753	

associated	with	dome-growth	(e.g.,	Miller	et	al.,	1998;	Umakoshi	et	al.,	2008).	754	

	755	

Once	a	volcano	has	remained	in	a	state	of	repose	for	more	than	a	few	months,	the	756	

level	of	seismicity	decreases,	although	episodic	increases	in	VT	seismicity	are	757	

common	and	are	often	associated	with	elevated	degassing	and	ash	venting	(Mastin,	758	

1994;	Ratdomopurbo	et	al.,	2013;	Budi-Santoso	et	al.,	2013;	Sernageomin,	2013;	759	

Cole	et	al.,	2014).	Seismic	crises	can	occur	during	inter-eruptive	repose;	these	may	760	

last	for	several	months	to	several	years	with	multiple	felt	earthquakes	and	no	761	

eruption	of	magma	(Japan	Meteorological	Agency,	1996,	Young	et	al.,	1998).	762	

	763	



4.2.2.	Deformation	764	

Geodetic	measurements	of	far-field	deformation	are	more	common	at	volcanoes	in	765	

an	episodic	regime	than	at	those	in	a	persistent	regime	(Table	3),	although	this	766	

apparent	correlation	could	be	coincidental,	since	many	of	the	volcanoes	in	our	767	

dataset	that	exhibit	episodic	behaviour	are	located	in	developed	countries,	which	768	

tend	to	have	well-established	monitoring	and	research	capabilities	(e.g.,	USA	and	769	

Japan).	Alternatively,	volcanoes	in	a	persistent	regime	may	lack	far-field	770	

observations	because	only	near-field	observations	are	required	for	short-term	771	

forecasting.	At	episodic	volcanoes,	periods	of	repose	may	show	inflation,	whereas	772	

deflation	is	primarily	associated	with	phases	of	dome	growth	(Table	3).	The	773	

timescales	of	inflation	vary	from	years	(e.g.,	Augustine,	Redoubt;	Cervelli	et	al.,	2010;	774	

Grapenthin	et	al.,	2013a)	to	decades	(e.g.,	Augustine,	Unzen;	Kohno	et	al.,	2008;	Lee	775	

et	al.,	2010).	Soufrière	Hills	Volcano,	which	has	remained	in	a	persistent	regime	776	

since	1995,	also	exhibits	cycles	of	far-field	inflation	and	deflation	coincident	with	777	

eruptive	and	non-eruptive	cycles	of	months	to	years	(Odbert	et	al.,	2014a).	Where	778	

persistent	behaviour	includes	short	phases	of	lava	effusion	and	explosive	eruption	779	

(e.g.,	Bezymianny,	Merapi,	Colima),	InSAR	measurements	suggest	negligible	far-field	780	

deformation	(Chaussard	et	al.,	2013;	Grapenthin	et	al.,	2013b).	781	

	782	

5.	Conceptual	magmatic	models	for	dome-building	volcanism	783	

	784	

The	interpretation	of	magmatic	processes	and	their	relation	to	volcanism	requires	a	785	

conceptual	model	for	volcanic	activity.	From	this	perspective,	understanding	the	786	



geometry	of	pre-eruptive	magma	storage	is	critical.	A	widespread,	but	not	universal,	787	

observation	about	dome-building	volcanoes	is	that	magma	is	supplied	from	storage	788	

regions	in	the	shallow	crust	(Table	5	and	references	therein),	which	has	stimulated	789	

models	of	eruptive	activity	modulated	by	shallow	magma	chambers	(Gourgaud	et	790	

al.,	1989;	Murphy	et	al.,	2000;	Mora	et	al.,	2002;	Humphreys	et	al.,	2008;	Roberge	et	791	

al.,	2009;	Larsen	et	al.,	2010;	Samaniego	et	al.,	2011;	Shcherbakov	et	al.,	2011;	792	

Coombs	et	al.,	2013;	Turner	et	al.,	2013).	There	is	also	evidence,	however,	for	deeper	793	

levels	of	magma	storage,	including	mid-	to	lower	crustal	earthquakes	associated	794	

with	volcanism	(McNutt,	2005;	Power	et	al.,	2013),	deep	sources	of	deformation	795	

(Pritchard	and	Simons,	2002;	Elsworth	et	al.,	2008),	and	deep	sources	of	gas	(Troll	796	

et	al.,	2013;	Hautmann	et	al.,	2014;	Christopher	et	al.	2015).	Petrological	and	797	

geochemical	data	help	to	quantify	the	importance	of	deep	igneous	processes	798	

(Hildreth,	2004;	Troll	et	al.,	2013;	Edmonds	et	al.,	2014),	including	mineral	799	

assemblages	that	record	multiple	crystallisation	depths	(Matthews	et	al.,	1994;	800	

Martel	et	al.,	1998;	Scott	et	al.,	2012;	Cashman	and	Blundy,	2013;	Turner	et	al.,	801	

2013)	and	geochronology	evidence	for	long	crustal	residence	times	(Volpe	and	802	

Hammond,	1991;	Zellmer	et	al.,	2003b;	Cooper	and	Reid,	2008;	Dosseto	et	al.,	2008;	803	

Claiborne	et	al.,	2010).	Finally,	tomographic	images	of	arc	volcanoes	suggest	magma	804	

storage	occurs	at	different	depths	throughout	the	crust	(e.g.,	Koulakov	et	al.,	2013).		805	

	806	

Here	we	place	geochemical	and	geophysical	evidence	for	transcrustal	magmatic	807	

systems	in	the	context	of	our	categorisation	of	temporal	variations	in	the	historical	808	

records	of	lava	dome-building	volcanoes.	Specifically,	we	address	the	question	of	the	809	



extent	to	which	observed	regimes	are	consistent	with	non-linear	processes	810	

associated	with	a	shallow	magma	chamber,	or	whether	they	require	involvement	of	811	

vertically	extensive	crustal	processes.	Importantly,	our	aim	is	not	to	attribute	the	812	

behaviour	of	an	individual	volcano	or	eruptive	event	to	either	paradigm,	but	instead	813	

to	investigate	the	extent	to	which	different	eruptive	regimes	may	reflect	814	

fundamentally	different	subsurface	conditions,	at	least	with	regard	to	the	extent	and	815	

connectivity	of	individual	magma	lenses.	We	conclude	that	whilst	storage	of	magma	816	

in	the	upper	crust	exerts	an	important	control	on	when	and	what	eruptive	activity	817	

occurs,	over	historical	timescales	different	patterns	of	volcanism	can	be	better	818	

ascribed	to	a	conceptual	model	based	on	complex	behaviours	of	vertically	extensive	819	

magma	storage	regions.	820	

	821	

5.1.	Shallow	chamber	paradigm	822	

A	common	model	for	eruptive	activity	at	dome-building	volcanoes	is	a	shallow	melt-823	

dominated	magma	chamber	that	is	replenished	from	depth	and	periodically	824	

discharges	magma	(Fig.	7).	In	this	paradigm,	intrusion	of	mafic	magma	from	depth	is	825	

assumed	to	trigger	the	eruption	of	shallow	magma	bodies	(Gourgaud	et	al.,	1989;	826	

Murphy	et	al.,	2000;	Mora	et	al.,	2002;	Humphreys	et	al.,	2008;	Roberge	et	al.,	2009;	827	

Larsen	et	al.,	2010;	Samaniego	et	al.,	2011;	Shcherbakov	et	al.,	2011;	Coombs	et	al.,	828	

2013;	Turner	et	al.,	2013).	The	concept	of	mafic	triggers	derives	primarily	from	829	

near-ubiquitous	evidence	for	magma	mixing	(Table	2).	Intruding	mafic	magma	also	830	

provides	an	explanation	for	observations	of	excess	SO2	(that	is,	emission	of	SO2	in	831	

excess	of	amounts	dissolved	in	the	erupted	magma;	Andres	et	al.,	1991;	Wallace,	832	



2003;	Shinohara,	2008;	Christopher	et	al.,	2010;	Wallace	and	Edmonds,	2011),	as	833	

SO2	is	much	more	soluble	in	mafic	magmas	that	in	silicic	magmas	(Wallace,	2005).	834	

Petrologic	evidence	for	shallow	magma	storage	comes	from	saturation	pressures	835	

recorded	in	melt	inclusions,	as	well	as	phase	assemblages	consistent	with	storage	836	

pressures	≤	200	MPa	(e.g.,	Moore	and	Carmichael,	1998;	Blundy	and	Cashman,	837	

2001;	Couch	et	al.,	2001).	838	

	839	

The	modulating	effect	of	shallow	magmatic	systems	on	eruptive	processes	is	840	

supported	by	geophysical	data.	Deflation	during	eruptive	periods	can	be	related	to	841	

magma	discharge	from	upper-	or	mid-crustal	magma	chambers		(Nishi	et	al.,	1999;	842	

Elsworth	et	al.,	2008;	Cervelli	et	al.,	2010;	Mattioli	et	al.,	2010;	Grapenthin	et	al.,	843	

2013a).	Furthermore,	most	seismicity	associated	with	unrest	and	eruptive	activity	is	844	

restricted	to	depths	of	<10	kilometres	(Ratdomopurbo	and	Poupinet,	2000;	Moran	845	

et	al.,	2008;	Power	and	Lalla,	2010;	Thelan	et	al.,	2010;	Petrosino	et	al.,	2011).	846	

Seismicity	is	commonly	inferred	to	record	the	stress	effects	of	the	formation	of	847	

magma	transport	pathways	(Kilburn,	2003;	Scandone	et	al.,	2007)	and	rise	of	848	

magmatic	fluids	from	shallow	magma	chambers	(Neuberg,	2000;	McNutt,	2005;	849	

Chouet	and	Matoza,	2013).	Shallow	seismicity	is	also	associated	with	shallow	850	

magma	intrusion	(Moran	et	al.,	2011),	pressurisation	and	pre-eruptive	inflation.			851	

	852	

Patterns	of	recharge	have	been	used	to	explain	pulsatory	and	cyclic	behaviour	853	

(Melnik	and	Sparks,	1999;	Barmin	et	al.,	2002).	Indeed	it	is	likely	that	volcanism	is	854	

modulated,	jointly,	by	different	parts	of	the	volcanic	system,	including	shallow	855	



magma	chambers.	However,	because	the	mechanism	for	replenishment	in	the	856	

shallow	chamber	paradigm	is	poorly	understood,	it	cannot	completely	explain	the	857	

hierarchy	of	common	behaviours	and	similar	patterns	and	styles	of	eruptive	activity.		858	

	859	

5.2.	Transcrustal	destabilisation	860	

A	shallow	magma	chamber	can	be	envisaged	as	the	upper	manifestation	of	a	much	861	

larger	transcrustal	system	(Marsh,	2000;	Cañón-Tapia	and	Walker,	2004),	which	862	

may	extend	throughout	the	crust	and	even	into	the	mantle	(Fig.	8).	Such	a	863	

conceptual	model	implies	that	mechanisms	for	unrest	and	eruption	may	involve	864	

more	complex	processes	than	discrete	intrusions.	Specifically,	magmatic	systems	865	

can	be	viewed	as	comprising	extensive	bodies	of	crystal-rich	magma	(mush)	with	866	

interspersed	lenses	of	melt	and	magmatic	fluids	that	are	formed	by	repeated	867	

intrusion	of	mafic	melts	from	the	mantle	(Solano	et	al.,	2012;	Connolly	and	868	

Podladchikov,	2013;	Christopher	et	al.	2015).	From	this	perspective,	melt	and	fluid	869	

layers	are	susceptible	to	destabilisation,	and	reorganisation	of	these	layers	may	870	

provide	a	trigger	for	eruptive	activity	in	mafic	(Tarasewicz	et	al.,	2012;	Neave	et	al.,	871	

2013)	and	large	caldera	systems	(Cashman	and	Giordano,	2014).	Similarly,	872	

transcrustal	processes	can	explain	apparently	anomalous	activity	in	some	dome-873	

building	volcanoes	(Christopher	et	al.,	2015),	whilst	also	providing	a	source	of	deep	874	

magma	and	magmatic	fluids.	Key	is	the	concept	of	the	meta-stability	of	transcrustal	875	

magmatic	systems	and	destabilisation	events	that	involve	either	all	or	part	of	the	876	

melt-bearing	region	(Fig.	8a,b),	with	or	without	contemporaneous	eruptive	activity	877	

(Fig.	8c).		878	



	879	

Temporal	and	spatial	variations	in	the	susceptibility	of	vertically	extensive	880	

magmatic	systems	to	destabilisation	can	also	explain	long-term	patterns	of	eruptive	881	

activity	at	dome-building	volcanoes.	First	we	return	to	the	question	of	mafic	882	

eruption	triggers,	particularly	as	evidenced	by	varying	intensities	of		883	

magma	mixing	in	the	eruptive	products.	Mixing	has	long	been	used	to	describe	the	884	

homogenisation	of	two	melts,	as	manifested	in	linear	two-element	geochemical	885	

diagrams.	Mixing,	however,	is	increasingly	viewed	as	involving	complex	interactions	886	

between	melts	and	crystal	mushes	(Blundy	et	al.,	2008;	Humphreys	et	al.,	2009;	887	

Cashman	and	Blundy,	2013).	From	this	perspective,	the	role	of	mixing	as	a	primary	888	

mechanism	of	eruption	triggering	is	less	clear.	In	fact,	mixing	may	be	an	effect,	as	889	

much	as	a	cause,	of	eruptive	activity,	particularly	if	triggered	initially	by	890	

destabilisation	of	the	magmatic	system.	Destabilisation	could	occur	from	the	bottom	891	

up,	with	deep	level	disturbances	propagating	into	the	upper	crust	(e.g.,	Christopher	892	

et	al.,	2015).	Alternatively	destabilisation	could	propagate	downward,	driven	by	a	893	

downward	propagating	decompression	wave	caused	by	early	eruptive	activity	(e.g.,	894	

Tarasewicz	et	al.,	2012).	In	either	case,	destabilisation	of	a	complex	magmatic	895	

system	can	force	interaction	among	melt	lenses	and	intervening	crystal	mush	zones	896	

(e.g.,	Cashman	and	Giordano,	2014).		897	

	898	

Another	important	aspect	of	dome-building	volcanoes	in	hydrous	arc	system	relates	899	

to	the	evolution	and	migration	of	volatiles.	Fractionation	of	deeply	sourced	arc	900	

basalts	(Annen	et	al.,	2006)	can	cause	sulphur	saturation	of	more	evolved	felsic	901	



melts	in	the	middle	and	lower	crust	(Wallace,	2005).	This	occurs	because,	although	902	

sulphur	is	highly	soluble	in	basaltic	melts,	it	is	much	less	soluble	in	felsic	melts	903	

(Lesne	et	al.,	2011).	As	a	consequence,	SO2	degassing	can	start	deep	within	the	crust,	904	

well	below	levels	of	shallow	magma	storage.	The	same	is	true	of	CO2,	where	strong	905	

pressure-dependence	may	promote	CO2	exsolution	throughout	the	crust	(e.g.,	906	

Blundy	et	al.,	2010).	Different	volatile	elements	can	therefore	be	fractionated	and	907	

stored	independently	at	multiple	crustal	levels	during	inter-eruptive	periods	of	908	

repose.	Separation	of	volatiles	from	their	parental	magmas	during	these	periods	of	909	

repose	can	explain	both	the	excess	SO2	degassing	and	decoupling	of	gas	and	magma	910	

fluxes	observed	in	dome-building	volcanoes	in	the	persistent	regime.	Ascent	of	911	

magmatic	fluids	from	depth	can	also	explain	decoupling	of	shallow	seismicity	from	912	

eruptive	activity	(Moran,	1994;	Roman	et	al.,	2004;	Girona	et	al.,	2014;	Hautmann	et	913	

al.,	2014,	Christopher	et	al.,	2015).	Similarly,	deep	(20	to	40	km),	long	period	914	

earthquakes	in	arcs	can	be	explained	by	exsolution	and	migration	of	insoluble	gases	915	

like	CO2	(McNutt,	2005;	Nichols	et	al.,	2011).	Finally,	independent	rise	of	magmatic	916	

fluids	may	cause	the	surface	deformation	observed	at	passively	degassing	volcanoes	917	

(Girona	et	al.,	2014),	and	can	help	to	explain	varying	timescales	of	far-field	inflation	918	

at	dome-building	volcanoes.	919	

	920	

5.3.	Persistent	dome-building	behaviour	921	

The	persistent	regime	combines	pulsatory	phases	of	effusive	eruption	and	922	

homogeneous	magma	compositions	with	sustained,	and	decoupled,	degassing	923	

(section	3.1.1),	and	is	typical	of	‘open’	system	behaviour	(e.g.,	Chaussard	et	al.,	924	



2013).	These	observations	appear	to	require	a	dynamically	connected,	through-925	

going	magmatic	system	to	sustain	a	persistent	regime,	especially	over	long	926	

timescales.	Large	explosive	eruptions	in	these	systems	involve	magma	that	is	more	927	

mafic	(deeper,	more	volatile-rich)	than	that	produced	during	effusive	activity.	928	

Transitions	between	persistent	shallow-seated	effusive	behaviour	and	intermittent	929	

deep-seated	explosions	thus	suggest	that	magmatic	systems	at	these	volcanoes	are	930	

vertically	extensive	and	(transiently)	dynamically	connected,	at	least	to	mid-crustal	931	

levels	(Fig.	8a).	More	generally,	rapid	transport	of	deep,	mafic	and	volatile-rich	932	

magmas	is	commonly	invoked	for	paroxysmal	events	at	open-system	basaltic	933	

volcanoes	(e.g.,	Métrich	et	al.,	2010;	Sides	et	al.,	2014).	934	

	935	

Eruptive	activity	at	a	second	group	of	volcanoes	in	the	persistent	regime	(section	936	

3.1.2)	reactivated	with	major	explosive	events	that	followed	long	periods	of	inter-937	

eruptive	repose.	In	these	volcanoes,	the	explosively	erupted	magma	is	more	evolved	938	

than	subsequent	extrusive	lavas,	which	show	gradual	decreases	in	SiO2	with	time.	939	

Progressive	variation	in	the	composition	of	erupted	products	can	be	explained	by	a	940	

vertically	extensive	and	connected	magmatic	system,	although	a	more	traditional	941	

zoned	magma	chamber	model	(e.g.,	Scott	et	al.,	2013)	cannot	be	excluded	on	the	942	

basis	of	these	characteristics	alone.	Most	important	from	a	volcanic	hazards	943	

perspective,	however,	are	the	compositional	homogeneity	and	paucity	of	mafic	944	

enclaves	(Scott	et	al.,	2013;	Turner	et	al.,	2013)	that	characterise	activity.	This	945	

suggests	that	these	persistently	active	volcanoes	have	relatively	stable	magmatic	946	



systems	that	are	less	susceptible	to	large-scale	destabilisation	than	during	inter-947	

eruptive	periods	of	repose.	948	

	949	

The	observation	that	explosive	eruptions	may	be	either	more	or	less	evolved	than	950	

magma	erupted	effusively	from	the	same	system	provides	insight	into	explosive	951	

eruption	triggers.	‘Top-down’	destabilisation	is	observed	in	cases	of	edifice	collapse	952	

following	either	a	long	duration	in	a	state	of	inter-eruptive	repose	(Bezymianny,	953	

Santiaguito,	Mount	St.	Helens)	or	sustained	effusive	activity	and	dome	growth	954	

(Lascar).	Top-down	triggering	taps	evolved	magma	from	high	in	the	crust.	‘Bottom-955	

up’	destabilisation,	in	contrast,	explains	explosive	events	that	appear	to	be	triggered	956	

by	the	rapid	rise	of	deep-derived	magmas	(Merapi,	Colima,	Shiveluch).		957	

	958	

Persistent	eruptive	regimes	require	that	the	magmatic	system	is	‘open’,	or	vertically	959	

connected.	Under	these	conditions,	eruptive	activity	may	be	neither	strictly	‘top	960	

down’	nor	‘bottom	up’	but	instead	reflect	the	intrinsic	instability	of	complex	961	

magmatic	systems.	One	mechanism	of	instability	relates	to	the	behaviour	of	crystal-962	

melt	suspensions,	which	segregate	to	form	separate	layers	of	melt	and/or	volatiles.	963	

We	suggest	that	these	(unstable)	layers	can	reorganise	rapidly	to	trigger	abrupt	964	

changes	in	eruption	patterns.	Layer	destabilisation	may	occur	because	of	external	965	

triggers,	such	as	regional	tectonics	or	eruptions	of	neighbouring	volcanoes	(e.g.,	966	

Walter	et	al.,	2007;	De	la	Cruz-Reyna	et	al.,	2010;	Biggs	et	al.,	2016).	Alternatively,	967	

passive	volatile	release	during	a	state	of	repose	may	cause	the	pressure	distribution	968	

sufficiently	to	cause	replenishment	of	magma	from	depth	(Girona	et	al.,	2015).	Such	969	



mechanisms	are	not	restricted	to	dome-building	volcanoes,	and	have	been	observed	970	

at	basaltic	arc	systems	that	are	vertically	well-connected	and	exhibit	complex	971	

feedback	mechanisms	for	magma	discharge	(e.g.,	Stromboli;	Ripepe	et	al.,	2015).	972	

	973	

5.4.	Episodic	dome-building	behaviour	974	

Dome-building	volcanoes	that	show	episodic	behaviour	are	characterised	by	975	

diminishing	eruption	rates	with	time	and	correlations	between	lava	extrusion	and	976	

volatile	emission.	Both	characteristics	are	indicative	of	closed	system	behaviour,	977	

which	likely	reflects	the	formation	and	ascent	of	discrete	magma	batches.	In	many	of	978	

these	volcanoes,	however,	there	is	evidence	for	the	interaction	of	different	melts	979	

(Table	3),	which	argues	against	discrete	melt	batches.	In	fact,	volcanoes	in	an	980	

episodic	regime	that	erupt	frequently	(e.g.,	Augustine,	Redoubt)	erupt	a	wide	range	981	

of	compositions	during	any	individual	eruption.	This	suggests	that	small	melt	982	

batches	evolve	independently	and	interact	only	during	eruptions	(e.g.,	Roman	et	al.,	983	

2006).	More	homogeneous	magma	compositions	produced	by	volcanoes	that	erupt	984	

less	frequently	(e.g.,	Mont	Pelée,	Unzen),	in	contrast,	suggests	that	magma	mixing	985	

may	occur	prior	to,	as	well	as	during,	eruptive	episodes	(Browne	et	al.,	2006).	986	

	987	

A	magmatic	model	based	on	the	shallow	chamber	paradigm	suggests	that	if	magmas	988	

are	generated	at	a	constant	rate	at	depth,	then	the	duration	a	volcano	remains	in	a	989	

state	of	repose	will	control	the	volume	of	magma	components	(volatiles,	melt,	and	990	

crystal	mush)	that	can	accumulate;	this	time-dependent	volume	may,	in	turn,	991	

influence	the	duration	a	volcano	remains	in	an	eruptive	state.	In	contrast,	under	the	992	



transcrustal	paradigm,	variations	in	frequency	and	duration	of	eruptive	episodes	993	

could	reflect	patterns	of	destabilisation	within	the	deeper	system.	Stability	may	be	994	

controlled	by	physical	properties,	such	as	the	size	of	magmatic	systems,	or	995	

fundamental	parameters	such	as	the	flux	of	magma	at	depth	(Caricchi	et	al.,	2014).	996	

	997	

5.5.	Large-magnitude	explosive	eruptions	998	

The	dynamic	nature	of	eruptive	activity	at	dome-building	volcanoes	suggests	that	999	

past	behaviour	is	likely	to	influence	stability	of	the	magmatic	system,	and	future	1000	

patterns	of	eruptive	activity.	For	example,	edifice	collapse	associated	with	large	1001	

magnitude	explosions	is	known	to	reduce	storage	pressures	(Pinel	&	Albino,	2013)	1002	

and	enable	the	eruption	of	denser,	more	mafic	magmas,	which	would	otherwise	stall	1003	

at	shallow	depths	(Pinel	&	Jaupart,	2000;	2005).	Indeed,	volcanoes	in	our	dataset	1004	

where	the	onset	of	eruptive	activity	involved	edifice	collapse	may	well	have	shown	1005	

different	long-term	patterns	of	eruptive	activity	if	the	onset	of	eruptive	activity	had	1006	

been	effusive.	Conversely,	where	edifice	collapse	occurred	after	a	long	duration	in	a	1007	

state	of	repose	(~millenia),	persistent	activity	appears	to	last	for	many	decades	(e.g.	1008	

Bezymianny,	Santiaguito;	Fig.	2).	Removal	of	the	edifice	during	these	large	1009	

magnitude	events	thus	appears	to	destabilise	the	system	(Pinel	&	Albino,	2013).	1010	

	1011	

A	different	situation	occurred	at	Mount	St.	Helens	in	1980,	where	the	initial	1012	

explosive	eruption	was	related	to	edifice	collapse,	but	the	prior	repose	interval	was	1013	

only	slightly	more	than	a	century.	In	this	case,	persistent	behaviour	continued	for	1014	

only	six	years.	It	is	noteworthy	that	the	volcano	reactivated	between	2004-2008	1015	



(Fig.	2)	after	two	intervening	episodes	of	inferred	recharge	from	deeper	in	the	1016	

system	(Moran,	1994;	Musumeci	et	al.,	2002).	The	limited	persistent	activity	of	1017	

Mount	St.	Helens	compared	to	Bezymianny	and	Santiaguito	may	be	simply	a	result	1018	

of	shorter	inter-eruptive	repose,	which	could	limit	the	accumulation	of	eruptible	1019	

magma.	Alternatively,	it	may	be	related	to	the	dacitic	composition	of	magma	at	1020	

Mount	St.	Helens,	compared	to	the	andesitic	magmas	of	Bezymianny	and	1021	

Santiaguito.	1022	

	1023	

6.	Conceptualising	volcanism	in	time	1024	

	1025	

Records	of	eruptive	activity	inform	our	understanding	of	magmatic	processes	and	1026	

are	commonly	the	basis	for	forecasts	of	eruptive	activity.		Traditionally,	volcanism	is	1027	

conceptualised	as	a	series	of	discrete	eruptions	(Siebert	et	al.,	2010)	that	are	1028	

characterised	by	measureable	properties	such	as	magnitude,	duration,	intensity	and	1029	

eruptive	style	(Mercalli,	1907;	Newhall	and	Self,	1982;	Pyle,	2000).	The	intervals	1030	

between	eruptions	are	usually	referred	to	as	repose	periods	and	at	these	times	the	1031	

volcano	is	commonly	interpreted	to	be	in	a	dormant	state.	This	ontology	of	volcanic	1032	

activity	as	a	point	process	stems	from	geological	records	that	comprise	a	punctuated	1033	

series	of	distinct	deposits,	and	historical	records	that	are	biased	towards	occasional	1034	

memorable,	and	generally	explosive,	individual	events	(Szakács	and	Cañón-Tapia,	1035	

2010).		1036	

	1037	



A	different	perspective	emerges	from	our	analysis	of	long-term	eruptive	behaviours	1038	

at	fifteen	well-studied	dome-building	volcanoes.	Instead	of	identifying	discrete	1039	

eruptions,	we	suggest	that	periods	of	eruptive	activity	be	classified	in	the	context	of	1040	

the	eruptive	history.	For	example,	at	two	different	volcanoes,	periods	of	dome	1041	

extrusion	may	have	similar	lava	volumes,	rates	of	extrusion,	and	duration,	but	can	1042	

occur	in	very	different	situations	(e.g.,	as	period	of	episodic	activity	or	a	phase	of	1043	

lava	extrusion	in	a	persistent	regime).	Including	time	as	a	key	parameter	highlights	1044	

the	shortcomings	of	viewing	volcanoes	as	in	only	either	an	“eruptive”	or	“non-1045	

eruptive”	state.	Critically,	this	ontology	of	volcanic	activity	should	influence	1046	

interpretation	of	both	volcanic	data	and	inferred	magmatic	processes.	1047	

	1048	

The	evidence	for	different	states	of	repose	provided	by	our	case	studies	suggests	1049	

that	lava	dome-building	volcanoes	can	be	characterised	by	three,	rather	than	two,	1050	

states:	(i)	a	state	of	dormancy	without	abnormal	geochemical	or	geophysical	signals	1051	

(inter-eruptive);	(ii)	an	active	state	in	which	magma	is	erupted;	and	(iii)	a	state	of	1052	

unrest	where	perturbations	in	the	system	at	depth	cause	marked	and	measurable	1053	

departures	from	a	background	(dormant)	state	(intra-eruptive).	Historical	records	1054	

allow	volcano	classification	by	one,	two	or	all	three	of	these	states.	Over	geological	1055	

timescales,	we	assume	all	volcanoes	experience	periods	of	dormancy	or	inter-1056	

eruptive	repose	periods.	Intra-eruptive	repose	periods	can	be	more	difficult	to	1057	

identify,	and	present	the	greatest	challenges	for	volcanic	hazard	assessment.	1058	

	1059	



Inter-eruptive	repose	occurs	at	volcanoes	that	show	episodic	behaviour,	meaning	1060	

that	they	conform	more	closely	to	the	traditional	interpretation	of	volcanism	as	a	1061	

sequence	of	discrete	eruptions.	The	duration	of	inter-eruptive	repose	can	vary	from	1062	

many	years	(e.g.,	Augustine,	Redoubt)	to	centuries	(e.g.,	Mount	Unzen),	but	in	all	1063	

cases	the	volcano	is	deemed	to	be	in	a	dormant	state	between	eruptive	periods.	1064	

Volcanoes	classified	as	dormant	can	move	into	the	unrest	state	with	increases	in	1065	

geophysical	(e.g.,	seismicity,	and	deformation)	and	fumarolic	activity.	For	example,	1066	

prior	to	1992,	Soufrière	Hills	Volcano	had	been	in	a	dormant	state	for	over	350	1067	

years,	but	had	moved	into	a	state	of	unrest	in	1896-97,	1933-37	and	1966-67,	as	1068	

evidenced	by	elevated	fumarolic	activity	and	intermittent	seismic	crises	(Shepherd	1069	

et	al.,	1971;	Odbert	et	al.,	2014b).	Similar	seismic	crises	were	also	observed	1070	

throughout	the	20th	century	at	Mt	Unzen	prior	to	eruption	onset	in	1991	(Japan	1071	

Meteorological	Agency,	1996).	1072	

	1073	

Intra-eruptive	repose	is	observed	at	volcanoes	in	a	persistent	regime	where	1074	

intervals	between	pulses	of	eruptive	activity	can	last	for	months	to	years	or	even	1075	

decades,	especially	following	major	explosive	events	(e.g.,	Bezymianny,	Colima,	1076	

Lascar,	Santiaguito).	At	these	volcanoes,	however,	periods	of	repose	are	1077	

characterised	by	sustained	degassing,	intermittent	seismicity	and	ash	venting,	all	of	1078	

which	indicate	magmatic	unrest	that	is	not	consistent	with	dormancy.	Importantly,	1079	

unrest	under	these	conditions	does	not	imply	imminent	eruptive	activity,	as	1080	

observed	in	the	example	of	Kudryavy	where	a	persistent	state	of	high	temperature	1081	



fumarolic	degassing	and	phreatic	activity	is	inferred	since	its	last	magmatic	eruption	1082	

in	1883	(Fischer	et	al.,	1998;	Korzhinsky	et	al.,	2002).	1083	

	1084	

By	characterising	exchangeable	traits	of	volcanic	behaviour,	we	demonstrate	that	1085	

the	case	histories	in	this	review	challenge	the	depiction	of	volcanism	as	a	point	1086	

process	in	time,	and	raise	questions	about	what	it	means	to	say	that	a	volcano	is	1087	

dormant	and	how	to	view	periods	of	non-eruptive	volcanic	unrest.	Importantly,	1088	

several	of	our	case	study	volcanoes	show	unrest	signals	that	are	greatly	elevated	1089	

after	eruptive	activity,	in	comparison	to	unrest	signals	when	a	volcano	is	in	a	period	1090	

of	longer	dormancy	(e.g.,	Merapi,	Lascar,	Bezymianny).	For	this	reason,	we	suggest	1091	

that	the	state	of	unrest	be	used	to	classify	volcanic	activity,	with	the	caveat	that	it	is	1092	

important	to	recognise	when	the	distinction	between	unrest	and	dormancy	is	1093	

determined	by	a	change	in	detection	thresholds	and	not	by	true	changes	in	the	state	1094	

of	a	magmatic	system.	1095	

	1096	

The	conceptualisation	of	eruptions	as	discrete	events	has	been,	and	still	is,	1097	

fundamental	to	volcano	classification,	volcano	databases,	data	selection	in	1098	

probabilistic	forecasts	and	the	interpretation	of	magmatic	processes.	The	GVP	1099	

database	(Siebert	et	al.,	2010)	is	the	only	comprehensive	global	compilation	of	1100	

active	volcanoes,	and	is	widely	used	to	characterise	volcanism,	inform	1101	

interpretations	of	volcanic	processes	and	provide	evidence	for	eruptive	forecasts.	1102	

The	catalogue	is	predicated,	however,	on	viewing	volcanism	as	an	alternation	of	two	1103	

different	events,	repose	period	and	eruption.	The	GVP	further	defines	repose	as	any	1104	



cessation	in	eruptive	activity	that	exceeds	3	months.	This	definition	works	well	for	1105	

some	of	our	case	studies	(e.g.,	Augustine,	Redoubt),	but	is	problematic	for	volcanoes	1106	

showing	prolonged	intermittent	activity	(e.g.,	Bezymianny,	Mount	St.	Helens,	1107	

Merapi,	Soufrière	Hills	Volcano).	More	critically,	the	GVP	database	structure	does	1108	

not	record	information	that	is	useful	for	both	characterising	and	interpreting	states	1109	

of	eruption	and	unrest.		1110	

	1111	

7.	Information	exchangeability	in	forecasting	volcanic	activity	1112	

	1113	

In	recent	decades	probabilistic	methods	have	become	established	as	the	principal	1114	

approach	to	forecasting	volcanic	activity.	Importantly,	they	can	capture	both	1115	

aleatory	and	epistemic	uncertainties	and	include	multiple	strands	of	evidence	and	1116	

different	kinds	of	data	(e.g.,	Newhall	and	Hoblitt,	2002;	Aspinall	et	al.,	2003;	1117	

Marzocchi	et	al.,	2004;	Sparks	and	Aspinall,	2004;	Neri	et	al.,	2008;	Sobradelo	et	al.,	1118	

2013;	Aspinall	and	Woo,	2014;	Hincks	et	al.,	2014;	Sobradelo	and	Martí,	2015).	1119	

Probabilistic	approaches,	however,	have	highlighted	specific	challenges	associated	1120	

with	eruptive	forecasts	at	dome-building	volcanoes.	The	most	acute	problem	relates	1121	

to	a	lack	of	data,	especially	at	volcanoes	with	infrequent	eruptive	activity	in	episodic	1122	

regimes.	The	issue	of	sparse	data,	however,	can	also	manifest	at	volcanoes	in	a	1123	

persistent	regime,	when	forecasting	a	long	period	of	dormancy.	Consequently,	an	1124	

important	question	in	volcanology	is	whether	observations	from	a	number	of	well-1125	

studied	volcanoes	can	be	used	to	reduce	uncertainty	associated	with	a	lack	of	data	at	1126	

an	individual	volcano.	This	is	especially	pertinent	with	the	development	of	global	1127	



databases	(e.g.,	Smithsonian	GVP;	La	MEVE;	WovoDAT)	and	global	approaches	to	1128	

data	collection	(e.g.,	Biggs	et	al.,	2014;	Carn	et	al.,	2016).	1129	

	1130	

Importantly,	the	principle	of	using	observations	from	multiple	volcanoes	requires	1131	

an	assumption	of	information	or	data	exchangeability	(e.g.,	Bebbington,	2014;	1132	

Sheldrake,	2014).	From	a	Bayesian	perspective,	exchangeability	requires	a	1133	

(subjective)	level	of	similarity,	but	importantly,	does	not	require	the	behaviours	of	1134	

the	objects	to	be	identical	(Bernado,	1996;	Gelman	et	al.,	2013).	Hence,	similar	1135	

behaviours	and	traits	based	on	phenomenological	observations	identified	in	this	1136	

review	could	be	a	basis	for	assumptions	of	exchangeability.	1137	

	1138	

7.1.	Approaches	to	assuming	exchangeability	1139	

One	approach	to	the	problem	of	limited	data	is	through	expert	judgement	(Aspinall	1140	

and	Cooke,	2013),	where	experienced	scientists	assess	key	parameters	and	1141	

likelihoods	of	future	events	based	upon	their	own	knowledge,	experience	and	1142	

judgements.	In	principle,	the	experts	should	also	estimate	the	uncertainty	of	their	1143	

likelihood	assessment	(Aspinall,	2010).	Issues	of	exchangeable	data	arise	when	1144	

comparisons	with	other	volcanoes	enter	into	these	discussions,	at	least	informally.	1145	

In	many	volcano	emergencies,	for	example,	such	assessments	are	ad	hoc	and	1146	

executed	largely	through	unstructured	discussion	within	a	volcano	observatory	1147	

team.	These	efforts	can	be	improved	by	formalised	methods	for	pooling	expert	1148	

judgements,	as	illustrated	by	hazard	assessments	for	Soufrière	Hills	Volcano	(Wadge	1149	

and	Aspinall,	2014).	Importantly,	the	experience	of	an	expert	in	previous	volcanic	1150	



crises	will	likely	influence	their	views.	This	illustrates	a	major	disadvantage	in	the	1151	

informal	approach,	where	the	basis	for	assessment	may	be	anecdotal	and	biased	1152	

towards	previously	witnessed	discrete	events.	Moreover,	even	the	most	experienced	1153	

volcanologist	is	unlikely	to	have	witnessed	more	than	a	handful	of	eruptive	events,	1154	

so	these	comparisons	warrant	a	more	rigorous	approach	to	identifying	appropriate	1155	

analogue	volcanoes	and	to	what	extent	comparisons	are	justified.	1156	

	1157	

Broad	classifications	for	volcano	‘type’	based	on	characteristics	such	as	morphology	1158	

(Rittmann,	1962;	Siebert	et	al.,	2010)	or	eruptive	style	(e.g.,	Hawaiian,	Strombolian,	1159	

Peléean,	Vulcanian	and	Plinian;	Bullard,	1962)	provide	a	natural	framework	for	1160	

assumptions	of	exchangeability.	However,	as	the	analysis	in	this	review	has	1161	

outlined,	the	historical	records	of	dome-building	volcanoes	are	only	partially	1162	

exchangeable.	Thus,	whilst	exchangeability	may	be	assumed	based	on	volcano	‘type’	1163	

(e.g.,	lava-dome	building),	the	limitations	and	sources	of	aleatory	uncertainty	of	1164	

probabilistic	forecasts	that	arise	from	this	assumption	must	be	addressed	by	1165	

identifying	both	the	underlying	conceptual	model	and	the	common	process	that	1166	

together	form	the	basis	for	exchangeability.	It	is	equally	important	to	recognise	key	1167	

differences	when	applying	exchangeability.	This	is	evident	in	a	cladistics	analysis	of	1168	

Japanese	arc	volcanoes	(Hone	et	al.,	2007)	that	identified	three	broad	volcano	types	1169	

grouped	by	composition,	eruptive	products	and	morphological	characteristics.	1170	

Differences	are	also	identified	in	a	study	of	magnitude-frequency	relations	that	1171	

treats	separately	closed-	and	open-vent	stratovolcanoes	(Whelley	et	al.,	2015).	1172	

	1173	



7.2.	Volcanic	unrest	1174	

The	concept	of	exchangeability	can	be	used	to	interpret	volcanic	unrest,	which	is	an	1175	

almost	a	ubiquitous	precursor	to	volcanic	activity.	Signs	of	unrest	are	typically	1176	

monitored	using	geodetic,	geophysical	and	geochemical	surveys	(e.g.,	Swanson	et	al.,	1177	

1983;	Sparks,	2003;	Sandri	et	al.,	2004;	Jaquet	et	al.,	2006;	Chouet	and	Matoza,	1178	

2013).	Critically,	these	monitoring	data	are	used	to	infer	magmatic	processes	(e.g.,	1179	

Voight,	1988;	Kilburn,	2003;	Smith	et	al.,	2007;	Lavallée	et	al.,	2008),	an	approach	1180	

that	requires	implicit,	if	not	explicit,	comparisons	with	unrest	from	previous	activity.	1181	

	1182	

The	simplest	approach	to	comparing	volcanic	unrest	among	volcanoes	is	to	consider	1183	

all	signals	of	unrest	as	weakly	exchangeable,	with	variations	in	the	duration,	pattern	1184	

and	occurrence	the	result	of	aleatory	uncertainty,	reflecting	the	natural	variability	of	1185	

volcanic	systems.	A	stronger	assumption	of	exchangeability	compares	signs	of	1186	

unrest	between	volcanoes	of	a	specific	type	(e.g.,	Phillipson	et	al.,	2013),	with	the	1187	

underlying	assumption	that	different	types	of	volcanoes	should	behave	in	similar	1188	

ways.	Our	work	shows,	however,	that	even	particular	volcano	‘types’	can	vary	1189	

greatly	in	behaviour.	In	particular,	we	have	shown	that	intra-repose	unrest	of	a	1190	

volcano	in	a	persistent	regime	may	reflect	a	very	different	state	of	activity	than	1191	

inter-repose	unrest	in	the	episodic	regime,	which	may	herald	the	onset	of	explosive	1192	

activity.	In	this	way,	our	categorization	of	eruptive	activity	at	dome-building	1193	

volcanoes	as	episodic	(closed-system)	or	persistent	(open-system)	could	help	to	1194	

further	refine	classifications	of	unrest,	particularly	with	regard	to	the	problem	of	1195	

distinguishing	between	non-eruptive	unrest	and	unrest	related	to	reawakening	of	a	1196	



volcano	in	repose	(e.g.,	Phillipson	et	al.,	2013).	Furthermore,	by	attempting	to	1197	

understand	differences	in	episodic	and	persistent	behaviour	in	terms	of	magmatic	1198	

processes,	this	provides	an	opportunity	to	interpret	patterns	of	volcanic	unrest	in	1199	

terms	of	these	magmatic	processes,	rather	than	purely	the	outcome	of	eruptive	1200	

activity	(e.g.,	Hincks	et	al.,	2014).	1201	

	1202	

8.	Conclusions	1203	

	1204	

We	have	shown	that	dome-building	volcanoes	show	two	fundamentally	different	1205	

patterns	of	eruptive	behaviours	that	we	term	episodic	and	persistent.	Episodic	1206	

behaviour	is	characterised	by	discrete	episodes	comprising	an	explosive	onset	1207	

followed	by	effusion	and	dome	formation.	In	this	regime,	explosively	erupted	1208	

magma	may	have	more	evolved	compositions	than	later-erupted	lava.	Excess	gas	1209	

emissions	may	be	observed	during	explosive	activity,	but	SO2	fluxes	are	correlated	1210	

with	the	eruption	of	lava	and	diminish	to	negligible	levels	following	the	end	of	each	1211	

eruptive	episode.	Persistent	behaviour,	in	contrast,	is	characterised	by	frequent	1212	

(~yearly)	phases	of	eruptive	activity	and	sustained	gas	fluxes	during	periods	of	1213	

intra-eruptive	repose.	Erupted	material	is	often	compositionally	homogeneous,	1214	

except	during	explosive	(paroxysmal)	eruptions,	which	often	involve	deep,	more	1215	

primitive,	magma	compositions.	Alternatively,	at	volcanoes	that	have	not	erupted	1216	

for	a	long	time	(~millenia),	large	explosive	Plinian	eruptions	can	be	followed	by	1217	

persistent	behaviour	where	lava	compositions	become	less	evolved	with	time.	1218	

Importantly,	all	volcanic	activity	is	episodic	if	viewed	over	sufficiently	long	times.	1219	



	1220	

We	explain	the	variety	of	episodic	and	persistent	behaviour	through	the	lens	of	1221	

vertically	extensive	magmatic	systems,	where	the	extent	of	connectivity	within	the	1222	

system	dictates	episodic	or	persistent	behaviour	(e.g.,	Christopher	et	al.,	2015).	1223	

Importantly,	open-system	behaviour	involves	transient,	dynamically	triggered	1224	

magma	transfer	from	depth	but	continuous	gas	transfer	through	the	system.	1225	

Episodic	behaviour,	in	contrast,	records	eruption	and	gas	loss	from	a	magma	batch	1226	

that	is	quickly	isolated	from	deeper	(mid-crustal)	reservoir.	An	interesting	question	1227	

relates	to	the	importance	of	volatiles	and	volatile-rich	melts	in	determining	the	1228	

stability	of	a	magmatic	system,	particularly	transitions	between	episodic	and	1229	

persistent	regimes,	and	eruption	triggering	in	episodic	regimes		(e.g.,	Borisova	et	al.,	1230	

2014;	Christopher	at	al.,	2015;	Girona	et	al.,	2015).		1231	

	1232	

From	a	hazard	forecasting	perspective,	our	15	case	studies	show	that	dome-building	1233	

volcanic	activity	cannot	be	characterised	by	a	point	process.	This	observation	1234	

highlights	a	key	ontological	issue	for	volcanology.	Discrete	eruptive	events	can	1235	

appear	similar	in	nature	in	both	an	episodic	and	persistent	regime,	but	are	1236	

associated	with	different	states	of	repose	and	long-term	behaviour.	Therefore,	when	1237	

analysing	volcanic	data,	and	interpreting	magmatic	processes,	it	is	important	to	1238	

characterise	eruptive	activity	in	the	context	of	the	longer-term	behaviour	of	a	1239	

volcanic	system.	We	have	shown	that	gas	data,	in	particular,	may	help	to	1240	

discriminate	between	inter-	and	intra-eruptive	repose.	Also	important	are	patterns	1241	



of	seismicity,	which	provide	information	on	the	depth	and	volume	of	magma	storage	1242	

(e.g.,	White	and	McCausland,	2016).			1243	

	1244	

Also	important	for	hazard	forecasting	is	developing	a	method	to	determine	how	1245	

monitoring	data	from	well-observed	volcanoes	can	be	used	to	inform	1246	

interpretations	of	monitoring	data	from	periods	of	unrest	at	less-studied	volcanoes.	1247	

Such	an	approach	is	feasible,	but	requires	an	understanding	of	the	extent	to	which	1248	

the	monitoring	data	can	be	considered	exchangeable.	We	suggest	that	1249	

exchangeability	can	be	formalised	by	assessing	temporal	patterns	in	volcanic	1250	

phenomena	(especially	relative	patterns	of	eruption,	degassing	and	repose),	even	if	1251	

the	datasets	have	different	spatial	and	temporal	data.	From	a	theoretical	standpoint,	1252	

linking	assumptions	of	exchangeability	(e.g.,	episodic	vs.	persistent)	to	conceptual	1253	

models	of	volcanic	systems	(e.g.,	closed	vs.	open)	provides	a	mechanism	to	interpret	1254	

monitoring	data	using	a	framework	of	magmatic	processes.	1255	

	1256	

Importantly,	the	approach	employed	in	this	review	cannot	be	used	to	identify	1257	

unique	magmatic	processes	at	individual	volcanoes,	and	in	that	sense	cannot	replace	1258	

‘in-depth’	studies	of	individual	volcanic	systems.	However,	it	provides	a	conceptual	1259	

framework	for	interpreting	common	processes	at	dome-building	volcanoes.	From	a	1260	

broader	perspective,	our	work	demonstrates	the	value	of	constructing	a	hierarchical	1261	

framework	for	volcanic	activity	based	on	exchangeable	behaviours.	We	suggest	that	1262	

this	approach	could	be	extended	to	volcanoes	with	other	types	of	characteristic	1263	

activity,	and	thus	provides	a	holistic	approach	to	analysing	global	volcanic	records.		1264	
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Figure	Captions:	2216	
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(1.5	column)	2219	
Figure	1:	Locations	of	the	15	dome-building	volcanoes	in	this	study:	(a)	Augustine;	2220	
(b)	Bezymianny;	(c)	Colima;	(d)	Kudryavy;	(e)	Lascar;	(f)	Merapi;	(g)	Mount	St.	2221	
Helens;	(h)	Mont	Pelée;	(i)	Popocatépetl;	(j)	Redoubt;	(k)	Santiaguito;	(l)	Shiveluch;	2222	
(m)	Soufrière	Hills	Volcano;	(n)	Tungurahua;	(o)	Mount	Unzen.	They	are	all	found	in	2223	
subduction	settings:	either	oceanic-continental	or	oceanic-oceanic	boundaries.		2224	
	2225	
(1.5	column)	2226	
Figure	2:	Binary	plots	indicating	whether	(magmatic)	eruptive	activity	(ash	2227	
explosions	and	lava	dome	growth)	was	recording	in	each	year	since	1800	C.E,	at	2228	
each	of	the	15	volcanoes	in	this	study.	Importantly,	the	red	bars	do	not	equate	to	2229	
continuous	eruptive	activity,	but	instead	are	meant	to	indicate	the	variation	in	long-2230	
term	patterns	of	eruptive	activity.	Labels	are	MER	-	Merapi;	LAS	–	Lascar;	COL	–	2231	
Colima;	SHI	–	Shiveluch;	SAN	–	Santiaguito;	BEZ	–	Bezymianny;	POP	–	Popocatépetl;	2232	
TUN	–	Tungurahua;	SHV	-	Soufrière	Hills	Volcano;	HEL	-	Mount	St.	Helens;	AUG	–	2233	
Augustine;	RED	–	Redoubt;	UNZ	–	Unzen;	PEL	–	Pelée;	KUD	–	Kudryavy.	Volcanoes	2234	
with	the	most	persistent	behaviour	are	found	towards	the	top	of	the	figure,	and	we	2235	
have	highlighted	issues	with	specifically	identifying	a	persistent	regime	in	older	2236	
records.	The	record	of	volcanic	activity	is	based	upon	the	Smithsonian	database	2237	
(Siebert	and	Simkin,	2002),	and	references	specific	to	each	volcano	that	can	be	2238	
found	in	section	3	and	the	supplementary	material.	2239	
	2240	
(Single	column)	2241	
Figure	3:	Representative	cartoons	for	the	two	different	eruptive	regimes	that	are	2242	
identified	in	this	review;	(a)	Episodic	behaviour,	where	the	duration	a	volcano	2243	
remains	in	an	eruptive	state	is	proportionally	much	shorter	that	the	duration	it	2244	
remains	in	non-eruptive	state.	Degassing	is	temporally	correlated	with	eruptive	2245	
activity,	and	the	regime	is	characterised	by	periods	of	no	eruptive	in	which	2246	
degassing	is	negligible,	which	we	define	as	inter-eruptive	repose;	(b)	Persistent	2247	



behaviour,	where	the	duration	a	volcano	remains	in	an	eruptive	state	is	2248	
proportionally	similar	to	the	duration	it	remains	in	non-eruptive	state.	Degassing	is	2249	
not	necessarily	temporally	correlated	with	eruptive	activity,	and	the	regime	is	2250	
characterised	by	periods	of	no	eruptive	in	which	degassing	is	continuous	and	2251	
sustained,	which	we	define	as	intra-eruptive	repose.	(c)	A	third	mixed	regime	is	2252	
characterised	to	identify	how	a	volcano	can	exhibit	both	episodic	and	persistent	2253	
behaviour	in	its	eruptive	record.	2254	
	2255	
(Double	column)	2256	
Figure	4:	A	hierarchical	construct	for	historical	eruptive	activity	at	dome-building	2257	
volcanoes.	The	first	sub-level	of	this	construct	identifies	the	two	different	2258	
behaviours,	episodic	and	persistent.	The	second	sub-level	of	this	construct	identifies	2259	
two	different	styles	of	episodic	and	persistent	behaviour	that	are	observed	in	2260	
historical	records,	over	identical	timescales	(i.e.	between	points	a	and	b).	Key	2261	
characteristics	for	each	behaviour	are	identified	in	the	boxes	below	each	cartoon.	2262	
	2263	
	2264	
(Double	column)	2265	
Figure	5:	(a)	Episodic	behaviour	at	Augustine	between	1970	and	2008,	consisting	of	2266	
four	eruptive	episodes	lasting	months	(red	lines	represent	onsets),	adapted	from	2267	
Power	and	Lalla,	(2010).	SO2	degassing	(orange)	is	temporally	correlated	with	the	2268	
eruptive	episodes,	as	indicated	by	the	data	from	McGee	et	al.,	(2010),	overlaid	on	the	2269	
lower	chart.	Black	bars	represent	seismicity,	which	is	elevated	prior	and	during	2270	
eruptive	episodes;	(b)	Persistent	behavior	at	Merapi	between	1990	and	2006,	with	2271	
several	phases	of	dome	growth	(blue	bars)	and	associated	explosions	(blue	vertical	2272	
arrows),	adapted	from	Ratdomopurbo	et	al.,	(2013).	SO2	degassing	(orange)	is	2273	
temporally	uncorrelated	with	eruptive	activity,	as	observed	by	the	overlaid	data	2274	
between	1992	and	1998.	Seismicity	is	correlated	with	phases	of	eruptive	activity,	as	2275	
indicated	by	the	variation	in	the	cumulative	seismic	energy	(red	line).	2276	
	2277	
(Single	column)	2278	
Figure	6:	Estimated	effusion	rate	(blue	dots)	at	Unzen	between	1990-1995,	from	2279	
Nakada	et	al.	(1999).	This	is	an	example	of	a	single	eruptive	episode	at	Unzen	that	2280	
lasted	5	years	between	1990-1995	(Fig.	2).	The	latter	stages	of	the	eruptive	episode	2281	
are	characterised	by	crystal-rich	lavas	and	low	effusion	rates.	During	the	eruptive	2282	
episode,	however,	there	are	periodic	increases	in	effusion	rate,	such	as	in	1993.		2283	
	2284	
(Single	column)	2285	
Figure	7:	Estimated	extrusion	rates	(blue	dots)	for	23	phases	of	dome	growth	at	2286	
Bezymianny	volcano	between	1993	and	2008,	from	van	Manen	et	al.,	(2010).	This	2287	
pattern	of	activity	is	an	example	of	a	persistent	regime,	in	which	frequent	periods	of	2288	
dome-growth	occur,	with	a	consistent	long-term	extrusion	rate.	However,	the	2289	
intensity	and	frequency	of	phases	of	dome	growth	can	vary.	The	red	dashed	line	2290	
indicates	the	cumulative	extruded	volume,	in	which	periods	of	dome	growth	and	2291	
repose	can	be	observed.	2292	
	2293	



	2294	
(Single	column)	2295	
Figure	8:	Example	of	a	conceptual	model	for	eruptive	activity	associated	with	the	2296	
shallow	chamber	paradigm	at	La	Soufrière,	Guadeloupe,	adapted	from	Hincks	et	al.	2297	
(2014),	where	geophysical	and	geochemical	observations	at	the	surface	are	2298	
interpreted	in	terms	of	shallow	crustal	magmatic	processes.		2299	
	2300	
(Single	column)	2301	
Figure	9:	Schematic	for	the	interaction	of	melt	layers	in	a	transcrustal	magmatic	2302	
system	at	lava	dome-building	volcanoes.	Possible	scenarios	for	eruptive	activity	and	2303	
volcanic	unrest;	(a)	complete	destabilisation	of	the	tran-	scrustal	system,	involving	2304	
deeply	sourced	mafic	melts	that	provide	volatiles	and	heat,	resulting	in	major	2305	
explosive	activity;	(b)	partial	destabilisation	of	the	transcrustal	system	involving	2306	
magma	stored	in	shallow	crustal	regions	resulting	in	effusive	and	minor	explosive	2307	
activity;	(c)	partial	destabilisation	of	the	magmatic	system	resulting	in	volcanic	2308	
unrest	but	not	eruptive	activity.	Importantly,	this	is	in	no	way	a	true	representation	2309	
of	the	structure	and	dimensions	of	magmatic	systems	at	lava	dome-building	2310	
volcanoes	as	they	are	found	in	subduction	zones.	Indeed,	perpendicular	to	tectonic	2311	
plate	margins	the	arc	widths	of	active	volcanism	are	generally	very	narrow	(~5	km	2312	
or	less).	2313	
	2314	
	2315	
	2316	
	2317	
	2318	
	2319	
	2320	
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