13 research outputs found
A role for tumor necrosis factor-alpha in remodeling the splenic marginal zone during Leishmania donovani infection.
The development of secondary lymphoid organs is a highly regulated process, mediated by tumor necrosis factor (TNF) family cytokines. In contrast, the mechanisms controlling changes in lymphoid architecture that occur during infectious disease are poorly understood. Here we demonstrate that during infection with Leishmania donovani, the marginal zone of mice undergoes extensive remodeling, similar in extent to developmental abnormalities in mice lacking some TNF family cytokines. This process is selective, comprising a dramatic and rapid loss of marginal zone macrophages (MZMs). As a functional consequence, lymphocyte traffic into the white pulp is impaired during chronic leishmaniasis. Significantly, MZMs were preserved in L. donovani-infected B6.TNF-alpha(-/-) mice or mice that received anti-TNF-alpha antibodies, whereas studies in CD8(+) T-cell-deficient mice and in mice lacking functional CD95L, excluded a direct role for either cytotoxic T lymphocyte activity or CD95-mediated apoptosis in this process. Loss of MZMs was independent of parasite burden, yet could be partially prevented by chemotherapy, which in turn reduced endogenous TNF-alpha levels. This is the first report of an infectious agent causing selective and long-lasting changes to the marginal zone via TNF-alpha-mediated mechanisms, and illustrates that those cytokines involved in establishing lymphoid architecture during development, may also play a role in infection-induced lymphoid tissue remodeling
[18F]FDG-6-P as a novel in vivo tool for imaging staphylococcal infections
Background
Management of infection is a major clinical problem. Staphylococcus aureus is a Gram-positive bacterium which colonises approximately one third of the adult human population. Staphylococcal infections can be life-threatening and are frequently complicated by multi-antibiotic resistant strains including methicillin-resistant S. aureus (MRSA). Fluorodeoxyglucose ([18F]FDG) imaging has been used to identify infection sites; however, it is unable to distinguish between sterile inflammation and bacterial load. We have modified [18F]FDG by phosphorylation, producing [18F]FDG-6-P to facilitate specific uptake and accumulation by S. aureus through hexose phosphate transporters, which are not present in mammalian cell membranes. This approach leads to the specific uptake of the radiopharmaceutical into the bacteria and not the sites of sterile inflammation.
Methods
[18F]FDG-6-P was synthesised from [18F]FDG. Yield, purity and stability were confirmed by RP-HPLC and iTLC. The specificity of [18F]FDG-6-P for the bacterial universal hexose phosphate transporter (UHPT) was confirmed with S. aureus and mammalian cell assays in vitro. Whole body biodistribution and accumulation of [18F]FDG-6-P at the sites of bioluminescent staphylococcal infection were established in a murine foreign body infection model.
Results
In vitro validation assays demonstrated that [18F]FDG-6-P was stable and specifically transported into S. aureus but not mammalian cells. [18F]FDG-6-P was elevated at the sites of S. aureus infection in vivo compared to uninfected controls; however, the increase in signal was not significant and unexpectedly, the whole-body biodistribution of [18F]FDG-6-P was similar to that of [18F]FDG.
Conclusions
Despite conclusive in vitro validation, [18F]FDG-6-P did not behave as predicted in vivo. However at the site of known infection, [18F]FDG-6-P levels were elevated compared with uninfected controls, providing a higher signal-to-noise ratio. The bacterial UHPT can transport hexose phosphates other than glucose, and therefore alternative sugars may show differential biodistribution and provide a means for specific bacterial detection
Regulation of immunity during visceral Leishmania infection
Unicellular eukaryotes of the genus Leishmania are collectively responsible for a heterogeneous group of diseases known as leishmaniasis. The visceral form of leishmaniasis, caused by L. donovani or L. infantum, is a devastating condition, claiming 20,000 to 40,000 lives annually, with particular incidence in some of the poorest regions of the world. Immunity to Leishmania depends on the development of protective type I immune responses capable of activating infected phagocytes to kill intracellular amastigotes. However, despite the induction of protective responses, disease progresses due to a multitude of factors that impede an optimal response. These include the action of suppressive cytokines, exhaustion of specific T cells, loss of lymphoid tissue architecture and a defective humoral response. We will review how these responses are orchestrated during the course of infection, including both early and chronic stages, focusing on the spleen and the liver, which are the main target organs of visceral Leishmania in the host. A comprehensive understanding of the immune events that occur during visceral Leishmania infection is crucial for the implementation of immunotherapeutic approaches that complement the current anti-Leishmania chemotherapy and the development of effective vaccines to prevent disease.The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement No.602773 (Project KINDRED). VR is supported by a post-doctoral fellowship granted by the KINDReD consortium. RS thanks the Foundation for Science and Technology (FCT) for an Investigator Grant (IF/00021/2014). This work was supported by grants to JE from ANR (LEISH-APO, France), Partenariat Hubert Curien (PHC) (program Volubilis, MA/11/262). JE acknowledges the support of the Canada Research Chair Program
RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response
Improved tuberculosis diagnostics and tools for monitoring treatment response are urgently needed. We developed a robust and simple, PCR-based host-blood transcriptomic signature, RISK6, for multiple applications: identifying individuals at risk of incident disease, as a screening test for subclinical or clinical tuberculosis, and for monitoring tuberculosis treatment. RISK6 utility was validated by blind prediction using quantitative real-time (qRT) PCR in seven independent cohorts. Prognostic performance significantly exceeded that of previous signatures discovered in the same cohort. Performance for diagnosing subclinical and clinical disease in HIV-uninfected and HIV-infected persons, assessed by area under the receiver-operating characteristic curve, exceeded 85%. As a screening test for tuberculosis, the sensitivity at 90% specificity met or approached the benchmarks set out in World Health Organization target product profiles for non-sputum-based tests. RISK6 scores correlated with lung immunopathology activity, measured by positron emission tomography, and tracked treatment response, demonstrating utility as treatment response biomarker, while predicting treatment failure prior to treatment initiation. Performance of the test in capillary blood samples collected by finger-prick was noninferior to venous blood collected in PAXgene tubes. These results support incorporation of RISK6 into rapid, capillary blood-based point-of-care PCR devices for prospective assessment in field studies
Factors affecting immunogenicity of BCG in infants, a study in Malawi, The Gambia and the UK.
BACKGROUND: BCG immunogenicity in infants differs between populations and these differences have been attributed to various factors. In this study, the influence of geographical location, season of birth, timing of vaccination, micronutrient status (zinc) and inflammatory status (C-reactive protein, CRP) were assessed. METHODS: Immunogenicity was assessed by cytokine signature in culture supernatants from diluted whole blood samples stimulated with M. tuberculosis PPD, using a multiplex bead assay. Results were correlated with the plasma zinc and CRP concentrations at the time of sampling, and with interview and household data. BCG vaccinated infants were recruited in Malawi, The Gambia and the UK. RESULTS: In Malawi, infants vaccinated within the first week after birth showed lower production of most cytokines measured than those vaccinated later. The number of cytokines showing significant differences between Malawian and Gambian infants decreased after adjusting for season of birth. In Malawi, a proportion of infants had zinc deficiency and elevated plasma CRP (>10Â mg/L), but neither zinc deficiency nor high CRP was associated with production of any of the cytokines measured. CONCLUSIONS: The cytokine/chemokine signatures observed in response to M. tuberculosis PPD in infants at 3Â months post BCG vaccination were affected by geographical location, season of birth, and timing of vaccination but not associated with the concentration of plasma zinc or inflammatory status. These factors should be considered in future trials of new TB vaccines
Nasal carriage of a single clone of community-acquired methicillin-resistant S<it>taphylococcus aureus </it>among kindergarten attendees in northern Taiwan
<p>Abstract</p> <p>Background:</p> <p>To evaluate the prevalence and microbiological characterization of community-acquired (CA) methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) nasal carriage in a kindergarten.</p> <p>Methods:</p> <p>Point prevalence study. Nasal swabs were collected from healthy children younger than 7 years of age who were attending a kindergarten in Taipei, Taiwan. A parent questionnaire regarding MRSA risk factors was administered simultaneously. All CA-MRSA colonization isolates were archived for subsequent antimicrobial susceptibility and molecular typing.</p> <p>Results:</p> <p>Of the 68 children who participated in the study, 17 (25%) had <it>S. aureus </it>isolated from nasal swabs. Nine (13.2%) of the 68 children had CA-MRSA carriage, and none of them had any identified risk factors. Antimicrobial susceptibility testing revealed all of the 9 CA-MRSA colonization isolates had uniformly high resistance (100%) to both clindamycin and erythromycin, the macrolide-lincosamide-streptogramin-constitutive phenotype and the <it>ermB </it>gene. Pulsed-field gel electrophoresis revealed 8 (88.9%) of 9 CA-MRSA colonization isolates were genetically related and multilocus sequence typing revealed all isolates had sequence type 59. All of the colonization isolates carried the staphylococcal cassette chromosome <it>mec </it>type IV, but none were positive for the Panton-Valentine leukocidin genes.</p> <p>Conclusion:</p> <p>The results of this study suggest that a single predominant CA-MRSA colonization strain featuring high clindamycin resistance circulated in this kindergarten. Additionally, due to the established transmissibility of colonization isolates, the high prevalence of nasal carriage of CA-MRSA among healthy attendees in kindergartens may indicate the accelerated spread of CA-MRSA in the community.</p