44 research outputs found

    Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas

    Get PDF
    Medulloblastoma is the most common malignant brain tumor in childhood. Molecular studies from several groups around the world demonstrated that medulloblastoma is not one disease but comprises a collection of distinct molecular subgroups. However, all these studies reported on different numbers of subgroups. The current consensus is that there are only four core subgroups, which should be termed WNT, SHH, Group 3 and Group 4. Based on this, we performed a meta-analysis of all molecular and clinical data of 550 medulloblastomas brought together from seven independent studies. All cases were analyzed by gene expression profiling and for most cases SNP or array-CGH data were available. Data are presented for all medulloblastomas together and for each subgroup separately. For validation purposes, we compared the results of this meta-analysis with another large medulloblastoma cohort (nĀ =Ā 402) for which subgroup information was obtained by immunohistochemistry. Results from both cohorts are highly similar and show how distinct the molecular subtypes are with respect to their transcriptome, DNA copy-number aberrations, demographics, and survival. Results from these analyses will form the basis for prospective multi-center studies and will have an impact on how the different subgroups of medulloblastoma will be treated in the future

    Efficient and selective hydrogen peroxide-mediated oxidation of sulfides in batch and segmented and continuous flow using a peroxometalate-based polymer immobilised ionic liquid phase catalyst

    Get PDF
    Highly efficient sulfide oxidation has been achieved under segmented and continuous flow using a peroxometalate-based polymer immobilised ionic liquid phase catalyst.</p

    Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells

    No full text
    Medulloblastoma is the most common malignant brain tumor in children, but the cells from which it arises remain unclear. Here we examine the origin of medulloblastoma resulting from mutations in the Sonic hedgehog (Shh) pathway. We show that activation of Shh signaling in neuronal progenitors causes medulloblastoma by 3 months of age. Shh pathway activation in stem cells promotes stem cell proliferation but only causes tumors after commitment to-and expansion of-the neuronal lineage. Notably, tumors initiated in stem cells develop more rapidly than those initiated in progenitors, with all animals succumbing by 3-4 weeks. These studies suggest that medulloblastoma can be initiated in progenitors or stem cells but that Shh-induced tumorigenesis is associated with neuronal lineage commitment

    Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas

    Full text link
    Cells with stem cell properties have been isolated from various areas of the postnatal mammalian brain, most recently from the postnatal mouse cerebellum. We show here that inactivation of the tumor suppressor genes Rb and p53 in these endogenous neural stem cells induced deregulated proliferation and resistance to apoptosis in vitro. Moreover, injection of these cells into mice formed medulloblastomas. Medulloblastomas are the most common malignant brain tumors of childhood, and despite recent advances in treatment they are associated with high morbidity and mortality. They are highly heterogeneous tumors characterized by a diverse genetic make-up and expression profile as well as variable prognosis. Here, we describe a novel ontogenetic pathway of medulloblastoma that significantly contributes to understanding their heterogeneity. Experimental medulloblastomas originating from neural stem cells preferentially expressed stem cell markers Nestin, Sox2 and Sox9, which were not expressed in medulloblastomas originating from granule-cell-restricted progenitors. Furthermore, the expression of these markers identified a subset of human medulloblastomas associated with a poorer clinical outcome
    corecore