125 research outputs found

    Precise, high-throughput production of multicellular spheroids with a bespoke 3D bioprinter

    Full text link
    3D in vitro cancer models are important therapeutic and biological discovery tools, yet formation of multicellular spheroids in a throughput and highly controlled manner to achieve robust and statistically relevant data, remains challenging. Here, we developed an enabling technology consisting of a bespoke drop-on-demand 3D bioprinter capable of high-throughput printing of 96-well plates of spheroids. 3D-multicellular spheroids are embedded inside a tissue-like matrix with precise control over size and cell number. Application of 3D bioprinting for high-throughput drug screening was demonstrated with doxorubicin. Measurements showed that IC 50 values were sensitive to spheroid size, embedding and how spheroids conform to the embedding, revealing parameters shaping biological responses in these models. Our study demonstrates the potential of 3D bioprinting as a robust high-throughput platform to screen biological and therapeutic parameters. Significance Statement In vitro 3D cell cultures serve as more realistic models, compared to 2D cell culture, for understanding diverse biology and for drug discovery. Preparing 3D cell cultures with defined parameters is challenging, with significant failure rates when embedding 3D multicellular spheroids into extracellular mimics. Here, we report a new 3D bioprinter we developed in conjunction with bioinks to allow 3D-multicellular spheroids to be produced in a high-throughput manner. High-throughput production of embedded multicellular spheroids allowed entire drug-dose responses to be performed in 96-well plate format with statistically relevant numbers of data points. We have deconvoluted important parameters in drug responses including the impact of spheroid size and embedding in an extracellular matrix mimic on IC 50 values

    A covalently crosslinked bioink for multi-materials drop-on-demand 3D bioprinting of three-dimensional cell cultures

    Full text link
    In vitro three-dimensional (3D) cell models have been accepted to better recapitulate aspects of in vivo organ environment than 2D cell culture. Currently, the production of these complex in vitro 3D cell models with multiple cell types and microenvironments remains challenging and prone to human error. Here we report a versatile bioink comprised of a 4-arm PEG based polymer with distal maleimide derivatives as the main ink component and a bis-thiol species as the activator that crosslinks the polymer to form the hydrogel in less than a second. The rapid gelation makes the polymer system compatible with 3D bioprinting. The ink is combined with a drop-on-demand 3D bioprinting platform consisting of eight independently addressable nozzles and high-throughput printing logic for creating complex 3D cell culture models. The combination of multiple nozzles and fast printing logic enables the rapid preparation of many complex 3D structures comprising multiple hydrogel environments in the one structure in a standard 96-well plate format. The platform compatibility for biological applications was validated using pancreatic ductal adenocarcinoma cancer (PDAC) cells with their phenotypic responses controlled by tuning the hydrogel microenvironment

    Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination

    Get PDF
    Antigen recognition by the T-cell receptor (TCR) is a hallmark of the adaptive immune system. When the TCR engages a peptide bound to the restricting major histocompatibility complex molecule (pMHC), it transmits a signal via the associated CD3 complex. How the extracellular antigen recognition event leads to intracellular phosphorylation remains unclear. Here, we used single-molecule localization microscopy to quantify the organization of TCR–CD3 complexes into nanoscale clusters and to distinguish between triggered and nontriggered TCR–CD3 complexes. We found that only TCR–CD3 complexes in dense clusters were phosphorylated and associated with downstream signaling proteins, demonstrating that the molecular density within clusters dictates signal initiation. Moreover, both pMHC dose and TCR–pMHC affinity determined the density of TCR–CD3 clusters, which scaled with overall phosphorylation levels. Thus, TCR–CD3 clustering translates antigen recognition by the TCR into signal initiation by the CD3 complex, and the formation of dense signaling-competent clusters is a process of antigen discrimination

    Identification of house price bubbles using user cost in a state space model

    Get PDF
    This article studies how much variation in house prices results from nonfundamental factors. We propose a relative valuation approach to quantifying a bubble in housing by incorporating the housing User Cost into a state space model. We find that UK house prices were undervalued from January 1995 to May 2001 and subsequently moved into a bubble over the period to October 2012. Our results support the bounded rationality hypothesis in the long run. However, we also find that the irrational and the rational expectation hypotheses can coexist in the short run when explosive bubbles are driven by price dynamics

    A three gene DNA methylation biomarker accurately classifies early stage prostate cancer

    Get PDF
    Background: We identify and validate accurate diagnostic biomarkers for prostate cancer through a systematic evaluation of DNA methylation alterations. Materials and methods: We assembled three early prostate cancer cohorts (total patients = 699) from which we collected and processed over 1300 prostatectomy tissue samples for DNA extraction. Using real-time methylation-specific PCR, we measured normalized methylation levels at 15 frequently methylated loci. After partitioning sample sets into independent training and validation cohorts, classifiers were developed using logistic regression, analyzed, and validated. Results: In the training dataset, DNA methylation levels at 7 of 15 genomic loci (glutathione S-transferase Pi 1 [GSTP1], CCDC181, hyaluronan, and proteoglycan link protein 3 [HAPLN3], GSTM2, growth arrest-specific 6 [GAS6], RASSF1, and APC) showed large differences between cancer and benign samples. The best binary classifier was the GAS6/GSTP1/HAPLN3 logistic regression model, with an area under these curves of 0.97, which showed a sensitivity of 94%, and a specificity of 93% after external validation. Conclusion: We created and validated a multigene model for the classification of benign and malignant prostate tissue. With false positive and negative rates below 7%, this three-gene biomarker represents a promising basis for more accurate prostate cancer diagnosis

    Alternative Splicing of RNA Triplets Is Often Regulated and Accelerates Proteome Evolution

    Get PDF
    Thousands of human genes contain introns ending in NAGNAG (N any nucleotide), where both NAGs can function as 3â€Č splice sites, yielding isoforms that differ by inclusion/exclusion of three bases. However, few models exist for how such splicing might be regulated, and some studies have concluded that NAGNAG splicing is purely stochastic and nonfunctional. Here, we used deep RNA-Seq data from 16 human and eight mouse tissues to analyze the regulation and evolution of NAGNAG splicing. Using both biological and technical replicates to estimate false discovery rates, we estimate that at least 25% of alternatively spliced NAGNAGs undergo tissue-specific regulation in mammals, and alternative splicing of strongly tissue-specific NAGNAGs was 10 times as likely to be conserved between species as was splicing of non-tissue-specific events, implying selective maintenance. Preferential use of the distal NAG was associated with distinct sequence features, including a more distal location of the branch point and presence of a pyrimidine immediately before the first NAG, and alteration of these features in a splicing reporter shifted splicing away from the distal site. Strikingly, alignments of orthologous exons revealed a ~15-fold increase in the frequency of three base pair gaps at 3â€Č splice sites relative to nearby exon positions in both mammals and in Drosophila. Alternative splicing of NAGNAGs in human was associated with dramatically increased frequency of exon length changes at orthologous exon boundaries in rodents, and a model involving point mutations that create, destroy, or alter NAGNAGs can explain both the increased frequency and biased codon composition of gained/lost sequence observed at the beginnings of exons. This study shows that NAGNAG alternative splicing generates widespread differences between the proteomes of mammalian tissues, and suggests that the evolutionary trajectories of mammalian proteins are strongly biased by the locations and phases of the introns that interrupt coding sequences.Damon Runyon Cancer Research Foundation (DRG 2032-09)National Science Foundation (U.S.). (no. 0821391)United States. National Institutes of Healt

    Electric dipole moments and the search for new physics

    Get PDF
    Static electric dipole moments of nondegenerate systems probe mass scales for physics beyond the Standard Model well beyond those reached directly at high energy colliders. Discrimination between different physics models, however, requires complementary searches in atomic-molecular-and-optical, nuclear and particle physics. In this report, we discuss the current status and prospects in the near future for a compelling suite of such experiments, along with developments needed in the encompassing theoretical framework.Comment: Contribution to Snowmass 2021; updated with community edits and endorsement

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe
    • 

    corecore