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Abstract 

Background: To identify and validate accurate diagnostic biomarkers for prostate cancer 

through systematic evaluation of DNA methylation alterations.  

Materials and Methods: We constructed three early prostate cancer cohorts (total patients = 

699) from which we collected and processed over 1300 prostatectomy tissue samples for DNA 

extraction. Using real-time methylation-specific PCR (qMSP), we measured normalized 

methylation levels at 15 frequently methylated loci. After partitioning sample sets into 

independent training and validation cohorts, classifiers were developed using logistic regression, 

analyzed, and validated. 

Results: In the training dataset, DNA methylation levels at seven of fifteen genomic loci 

(GSTP1, CCDC181, HAPLN3, GSTM2, GAS6, RASSF1, and APC) showed large differences 

between cancer and benign samples. The best binary classifier was the GAS6/GSTP1/HAPLN3 

logistic regression model, with an AUC of 97%, which showed a sensitivity of 94%, and a 

specificity of 93% after external validation. 

Conclusion: We created and validated a multi-gene model for the classification of benign and 

malignant prostate tissue. With false positive and negative rates below 7%, this 3 gene biomarker 

represents a promising basis for more accurate prostate cancer diagnosis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Diagnostic challenges in Prostate Cancer 

Its high prevalence and low risk for progression have complicated efforts to screen and manage 

prostate cancer.1–3 Serum prostate-specific antigen (PSA) testing is the most commonly used tool 

to identify men suspected of harboring prostate cancer. Patients with elevated PSA levels are 

typically referred for biopsy testing for definitive diagnosis. With a false positive rate of >75 % 

and positive predictive value of ~25 %, PSA results are most often inconclusive.4,5 Accordingly, 

each year in United States alone, approximately 4.7 million men are identified with elevated PSA 

levels, and 1.3 million of these men are recommended to undergo biopsy for prostate cancer. 

However, 975,000 prostate biopsy results are negative and can be considered unnecessary, which 

exposes patients to complications such as infections, bleeding and thousands of hospitalizations.6  

In an effort to identify a more accurate non-invasive biomarker than PSA, numerous studies have 

investigated the use of mRNA, microRNA, prostate-specific proteins, and genetic mutations as 

biomarkers. However, prostate cancers possess few informative biomarkers in these categories.7–

10 Only a handful of biomarkers (i.e. PSA, PCA3, TMPRSS2-ERG gene fusions) are currently 

available for diagnostic use in prostate cancer. Unfortunately, these tests exhibit low balanced 

accuracy, with  high false positive or false negative rates.11–13 Pathologically evaluated 

prostatectomy tissue can serve as the gold-standard for investigating the maximum possible 

accuracy of a diagnostic biomarker. But to our knowledge, no study has optimized and validated 

a biomarker for prostate cancer detection in tissue. 

 

Methylation in Prostate Cancer 

Aberrant DNA methylation may be a superior substrate for biomarker discovery in early prostate 

cancer. In contrast to other genomic abnormalities, cancer-specific DNA methylation alterations 

are highly prevalent in prostate cancer, making them a sustained focus of research,14–25 with 

growing evidence supporting their role in progression and risk stratification.26–28 Some 

investigators study therapeutic strategies based on methylation inhibitors,14,29 others are working 

to develop DNA methylation alterations as useful diagnostic biomarkers.30 To date, most efforts 

in this area have focused broadly on describing the epigenetic landscape of prostate cancer. 

Notably, Yegnasubramanian found that GSTP1, APC, RASSF1A, PTGS2, and ABCB1 loci were 

hypermethylated in >85% of cancers.19 Haldrup et al. added AOX1, CCDC181, GAS6, HAPLN3, 

KLF8, and MOB3B loci as exhibiting cancer-specific hypermethylation and association with 

biochemical recurrence,21 and Vanaja, Mahapatra and others identified additional DNA 

methylation alterations associated with recurrence or risk of progression using genome-wide 

approaches.20,25,28,31  

Most prior studies have relied on vast sets of genes tested on comparatively few samples. Few 

studies have validated their results or generated methylation-based classifiers for clinically 

important outcomes. Exceptions include ConfirmMDx, a DNA methylation-based test performed 

on negative biopsy tissues to address the risk of finding cancer on a subsequent biopsy.32,33 In a 



multicenter validation with 848 patients, the test yielded a high negative predictive value (89%), 

but limited specificity (64 %) and sensitivity (65 %).32,33 Similarly, Haldrup et al.21 developed a 

three gene DNA methylation classifier for risk of treatment failure (biochemical recurrence after 

prostatectomy) using a training cohort of archival samples from 293 patients which was 

validated on an independent cohort of fresh frozen samples from 114 prostatectomy patients, 

achieving a hazard ratio of 2.33.21 We are not aware of any validated DNA methylation 

classifiers that are designed to directly detect or diagnose prostate cancer or to help select 

patients for biopsies.  

The goal of this project was to determine the maximum possible accuracy of a methylation-based 

biomarker in classifying prostate cancer. With superior performance to single gene tests, 

compact multi-gene biomarkers are ideal for clinical implementation.32,34–37 Compact tests 

overcome hurdles associated with genome-wide testing, including high cost and challenges with 

validation and analysis across thousands of data elements.38–40 To build a compact and 

reproducible diagnostic classifier, we chose real-time methylation-specific PCR (qMSP), a 

highly sensitive and cost-effective assay platform.41–44 We prioritized and selected 15 DNA 

methylation alterations for having been individually validated in multiple previous reports 

(Supplementary Tables S1 and S3). In this study, we tested each locus alone and in optimal 

combinations to determine its accuracy in classifying pathologically reviewed prostatectomy 

tissue as benign or cancer. As “ground truth,” we profiled benign and cancer tissue samples from 

699 prostatectomy cases using real-time methylation-specific PCR (qMSP), a highly sensitive 

and cost-effective assay for quantitative DNA methylation analysis.41,43,44 For statistical power, 

DNA methylation profiling data from over 1250 cancer and 96 benign samples were divided into 

independent training and validation cohorts. Using this data, we constructed and validated a 

highly sensitive and specific classifier for detecting prostate cancer in tissue. Future studies will 

test its performance in non-invasive settings (i.e., urine, blood).  

 

Materials and Methods 

Patient material 

As part of a larger genomic profiling study, three patient cohorts were analyzed. They comprised 

of consecutive radical prostatectomies (RP) performed with curative intent for histologically 

verified, clinically localized prostate cancer (Table 1). Cohorts were obtained from Queen’s 

University/Kingston General Hospital (2000 - 2012), McGill University/Montreal General 

Hospital (1994 - 2013) and London Health Science Centre (LHSC) (2003 - 2009). In total, 699 

patients were included in this study.  

Using a previously published protocol 45, we macrodissected and extracted DNA from index 

tumour foci from 699 RP cases and contralateral benign tissue (at least 5mm away from tumor 

foci) from 96 of those cases. Multiple samples were collected from each case, yielding over 1300 

tissue samples. DNA was quantified on a Qubit 3.0 Fluorometer (ThermoFisher Scientific) using 



the dsDNA HS (High Sensitivity) kit. A summary of final sample numbers for each DNA 

methylation assay is shown in Supplementary Table S2.  

Real-time Methylation-specific PCR (qMSP) analysis 

By searching PubMeth46 and PubMed databases, we identified 77 loci that were frequently 

hypermethylated in prostate cancer. Of these, we prioritized 24 that were documented in multiple 

studies containing >250 cases/samples, further signifying their potential reliability. ALDH1A2 

and GSTM2 were added on the basis of preliminary data (N. How, not shown). We were able to 

design robust qMSP assays targeting 15 of 26 loci (Supplementary Table S3), and the rest were 

omitted from the study. An assay targeting ALU repeat elements was used as the reference 

control and distilled water was used as a negative control.44,47 

We modified previously described protocols for real time MSP (qMSP) assays according to 

MIQE guidelines42,44,48,49 and quantified changes in 15 DNA methylation alterations 

(Supplementary Table S3) in DNA samples collected from three RP cohorts.45,50 Briefly, 

individual DNA samples (50 ng) were bisulfite converted according to the manufacturer's 

protocol (EpiTect Bisulfite Kit, Qiagen). A mastermix was prepared that contained one of 15 

primer pairs (400 nM; ThermoFisher Scientific) and probe sets (150 nM; ThermoFisher 

Scientific) (Supplementary Table S3), nucleotides (250 μM; Invitrogen), MgCl2 (1.2 mM; NEB), 

BSA (0.5 mg/mL; NEB), ROX reference dye (24.5 nM; Invitrogen), EpiMark Taq polymerase 

(0.25 U; NEB) and 1X EpiMark reaction buffer (NEB). Next, Bisulfite-converted DNA (1 μL) 

was added to the mastermix and 10 uL reactions were amplified using a VIIA7 thermocycler 

(Applied Biosystems). Cycling conditions included denaturation at 95oC for 30 s, 7 cycles of 

touch-down PCR with annealing temperatures decreasing by 2oC per cycle and extension at 68oC 

for 30 s, followed by 48 cycles of 30 s at 95°C, 30 s at 58°C, 30 s at 68°C, and a final extension 

step of 5 min at 68°C.  

CpG methylated Jurkat DNA (New England Biolabs) was used as a positive control sample, and 

assay efficiency of each qMSP assay was determined by generating standard curves as described 

previously (Supplementary Table S3).49 

Data analysis and Statistics 

The relative threshold method, Crt (Applied Biosystems Relative Quantification “RQ” 

application on ThermoFisher Cloud) was used to determine cycle quantification (Cq) values for 

each amplification curve. Crt parameter optimization (Early access version, ThermoFisher 

Scientific Cloud) was conducted to enhance reliable detection of amplification. Sample reactions 

with inconclusive amplification curves, contamination, or poor reaction efficiency were excluded 

from further analysis. Reactions with negative amplification were assigned a Cq two higher than 

the maximum observed Cq value in their respective cohort. Amplification data at each locus and 

for each sample type are listed in Supplementary Table S2. Normalized methylation levels were 

calculated using delta-delta Ct method51 as described below:  

Normalized methylation levels =   



Where,  

Pt = Cq of positive control DNA control for target gene;  

St = Cq of sample for target gene; 

Pr = Cq of positive control DNA for reference gene (ALU); 

Sr = Cq of sample for reference gene (ALU) 

Exploratory analyses were performed using the training dataset, and differential methylation 

levels of 15 selected DNA methylation alterations were assessed as fold changes using a Mann-

Whitney test. p values were adjusted for false discovery using the family-wise Bonferroni 

method.52,53 All DNA methylation alterations with significant enrichment in cancer samples 

compared to benign were considered for downstream analysis. Univariate and multivariate 

logistic regression analysis assessing all possible combinations of significant DNA methylation 

alterations were performed and the resulting models were ranked according to their balanced 

accuracy. Receiver operating characteristic (ROC) curve analysis, areas under these curves 

(AUC), and confusion matrices were generated for best-performing models using model 

thresholds determined from the "closest topleft" method.53,54 The best model was selected using 

the training cohort dataset and was then applied to the validation cohort dataset. Statistical 

analysis was performed in R (v3.4.1) using "pROC", "caret", “ggrepel” and "ggplot2" 

packages.53–56 

 

Results 

Common methylation alterations in prostate cancer 

We assembled three radical prostatectomy cohorts and extracted over 1300 DNA samples – (see 

Table 1 and Supplementary Table S2). These cohorts were selected originally to study prognostic 

biomarkers. However, as a by-product of that work, we identified diagnostic biomarkers using 

the following approach. Cases from two cohorts with 41 benign samples and 890 cancer samples 

from 480 patients were merged into a training set. An independent cohort from a 3rd hospital 

contained 55 benign samples and 377 cancer samples from 219 patients and was used for 

validation.      

In prostate cancer, CpG island hypermethylation takes place in large blocks (> 1 kb).57–61 For 

example, methylation levels of seven Illumina 450K probes covering a GSTP1 CpG island were 

found to be consistently higher in cancer compared to benign tissue (Supplementary Figure 

S1).57 Thus, small regions of CpG islands can be viewed as representative when assessing DNA 

methylation status in cancer. Using real-time MSP assays, we profiled methylation changes in 

~100 bp regions representing CpG islands at 15 different genomic loci which are among the 

most frequently reported as hypermethylated in prostate cancer (see Supplementary Table 

S1).15,19–22,30,62–67 In the training cohort, 14 out of 15 of these loci were significantly 

hypermethylated (adjusted P value < 0.01) with normalized methylation levels > 2 in 890 cancer 

samples compared to 41 benign samples (Figure 1). In contrast, methylation levels of the HIC1 



CpG island were hypermethylated at similar levels in cancer and benign tissues, possibly 

representing a cancerization field effect.19  

DNA methylation at seven loci, GSTP1, CCDC181, HAPLN3, GSTM2, GAS6, RASSF1, and 

APC, showed the largest differences between cancer and benign tissues (Figure 2). For each of 

these seven regions, DNA methylation levels in benign tissue was minimal with low variation 

(Figure 2).  In a univariate logistic modelling of the training dataset, the area under the curve 

(AUC) from ROC analysis for each of these regions ranged from 83% to 95%, individually. The 

specificity of these univariate logistic models ranged from 77% to 90%, and the sensitivity 

ranged from 72% to 91% (Figure 2). The GSTP1 locus was highly methylated in cancer, but not 

in benign samples.  As a cancer classifier, DNA methylation at GSTP1 locus demonstrated an 

AUC of 95% and balanced accuracy of 88%. TCGA prostate cancer methylation data show 

similar results (Supplementary Figure S1).57 Two other loci, GAS6 and APC, demonstrated 

strong diagnostic capabilities with comparable balanced accuracies to GSTP1, but with 

individual AUCs of < 90%. We found that regardless of the model threshold chosen, each single 

gene had false positive and/or false negative rates of 10% or higher. Therefore, to improve 

accuracy we performed multigene logistic modelling. 

 

Multigene diagnostic model in prostate cancer 

The multivariate approach chosen relied on the simplest binary classifier model, logistic 

regression. Using the training dataset, we tested all possible combinations of all 15 methylation 

regions to identify a multigene model with higher sensitivity and specificity. We identified the 

GAS6/GSTP1/HAPLN3 model as the best binary (cancer/benign) classifier with an AUC of 97% 

for the ROC curve (Table 2, Figure 3, panel A). Using the closest top-left method, we identified 

the threshold of 0.917 for the three-gene model, which produced specificity and sensitivity of 

92% (Figure 3, panel A). A summary of the performance of one, two, or three gene models using 

GAS6/GSTP1/HAPLN3 DNA methylation is shown in Supplementary Table S4. Judging by its 

large coefficient, methylation levels at GSTP1 locus contributed most significantly to the 

classifier. This is consistent with its frequent inclusion in other prostate classifiers 

(Supplementary Table S4).32,33,62 However, methylation levels at GAS6 and HAPLN3 loci also 

made significant contributions to the model (p-value < 1.0e-06; Table 2).  

Having optimized an accurate classifier, we then used the same threshold to validate the 

GAS6/GSTP1/HAPLN3 model in an independent cohort. As illustrated in in Table 3 and Figure 3 

(panel B), the best three gene model (GAS6/GSTP1/HAPLN3), misclassified only 2 of 30 benign 

samples (6.7%) from the validation dataset as cancer. As for the cancer samples, only 12 out of 

212 samples (5.6%) were misclassified as benign. The three-gene model showed sensitivity of 

94% and specificity of 93% in the validation dataset. Overall, the GAS6/GSTP1/HAPLN3 model 

showed a significant improvement over univariate approaches, with a balanced accuracy of 94 

%, positive predictive value (PPV) of 99% and a negative predictive value (NPV) of 70% in the 

validation dataset (Table 3).  



Discussion 

PSA screening leads to over 900,000 negative biopsies per year in the United States alone, many 

of which would be unnecessary if an accurate non-invasive test was available.6 Despite 

significant efforts, very few molecular features of prostate cancer have been validated for this 

purpose. PROGENSA is the only FDA approved test currently utilized for prostate cancer 

diagnosis. This test detects changes in PCA3 and PSA RNA levels in urine samples of patients 

suspected of harboring prostate cancer. With balanced accuracy of 67 % and PPV of 34 %, this 

test however, produces a large number of false positives.68–70   

In considering richer sources of potential biomarkers for early prostate cancer, DNA 

hypermethylation is by far the most diverse and prevalent genomic aberration. It is found at 

higher levels in cancer tissues compared to benign histological samples such as normal/adjacent 

normal, benign prostate hyperplasia (BPH) and prostatic intraepithelial neoplasia (PIN).19,71–73 Its 

stability and ease of detection in archival tissues further enhance the feasibility and appeal of its 

use in clinical applications.  

Few methylation-based classifiers have been rigorously tested. Studies to date have small sample 

sizes62,74,75 and few have validated a DNA methylation-based diagnostic classifier for prostate 

cancer. To date, only one epigenetic assay, ConfirmMDx,32,33 is commercially available, which 

measures methylation at APC, GSTP1, and RASSF1 loci, and is intended for use on benign 

prostate biopsies to identify men who are likely to have cancer in a subsequent biopsy. This test, 

designed to detect molecular features of a field cancerization effect, represents a challenging 

application since field effects are reportedly variable in time and space.66,71,76 It is therefore not 

surprising that this test shows limited specificity (64 %) and sensitivity (66 %) with an overall 

misclassification rate exceeding 35 %.32,33 The current work addresses a simpler question: 

Whether or not a biospecimen contains cancer, and represents the largest independently validated 

study of its kind. Methylation levels at GSTP1, HAPLN3, and GAS6 loci formed the basis of the 

classifier, which demonstrated high accuracy. In univariate analysis, none of the DNA 

methylation alterations investigated here possessed false negative and false positive rates below 

10%. Through multivariate analysis, the best model containing GAS6, GSTP1, and HAPLN3 

DNA methylation alterations demonstrated high balanced accuracy with false positive and false 

negative rates of approximately 6%.  

Since cancer-specific DNA hypermethylation is heavily documented in the literature,77–79 the 

biological relevance of genes in the three-gene model merits attention. Methylation at the GSTP1 

locus contributed most significantly to the final three-gene classifier. GSTP1 belongs to the 

glutathione S-transferases (GSTs) family, which help maintain cell integrity and protect against 

DNA damage by detoxifying electrophilic substances. In recent studies, additional non-

enzymatic functions of GSTP1 (i.e. protein-protein interactions) were elucidated as playing a 

major role in cell proliferation.80 In prostate cancer, GSTP1 DNA methylation effectively 

silences the gene.67,72,81–83 GSTP1 silencing can activate Stat3, which has been implicated as an 

oncoprotein in prostate cancer progression.84,85  



The functional relevance of GAS6 and HAPLN3 methylation, both of which contributed roughly 

equally to the final three-gene classifier (Table 2), are not well understood. GAS6 encodes an 

extracellular signalling peptide called growth arrest-specific 6. However the effect of DNA 

methylation on its expression has not been investigated. In vitro cell line studies have shown that  

GAS6 signalling promotes invasion but inhibits cell proliferation.86 In addition, GAS6 signals 

may also protect against apoptosis induced by chemotherapy.86,87,88 HAPLN3 (Hyaluronan And 

Proteoglycan Link Protein 3) belongs to the hyaluronan and proteoglycan binding link protein 

gene family which function to maintain extracellular matrix to support tissue architecture.89 

Although this family of proteins has been previously found to be involved in drug resistance in 

multiple myeloma,90 the functional role of HAPLN3 in prostate epithelia is poorly understood, as 

are the consequences of DNA methylation at this locus.15 Their consistent hypermethylation 

levels in prostate cancer point to the importance of further investigation to elucidate the roles for 

GAS6 and HAPLN3 in prostate biology and disease. 

Although there are no DNA methylation-based tests currently marketed for prostate cancer 

diagnosis, several other types of molecular tests have been marketed for this purpose. These tests 

show high negative predictive values, but limited specificity and sensitivity.11–13 For successful 

validation and implementation of non-invasive tests, biomarker assays can first be optimized and 

validated on tissue samples to demonstrate their specificity and sensitivity prior to testing them 

on liquid biopsy samples such as urine or blood.91 In this study, we used prostatectomy tissue 

samples instead of liquid biopsy samples (i.e. urine or blood) to build a prostate cancer classifier. 

We see this as a necessary step since many of the previous studies investigating DNA 

methylation in prostate cancer were based on small sample sizes.  

Few DNA methylation tests investigated for prostate cancer diagnosis. GSTP1 methylation was 

tested in multiple studies showing sensitivity and specificity as a single gene urine biomarker of 

52 % and 89 %, respectively.67,92 With highly sensitive new techniques such as next generation 

sequencing, increasing sensitivity should be feasible. The data presented here demonstrate 

theoretical maximum accuracy of a urine test for the best single gene classifier (GSTP1) vs. the 

three-gene classifier (GAS6/GSTP1/HAPLN3). In a hypothetical cohort of 1000 men with 

elevated PSA levels, 293 of whom have prostate cancer,4 optimal testing for GSTP1 would 

incorrectly classify 250 men (122 false positive (FP), 128 false negative (FN)) (Supplementary 

Table S4), whereas the three-gene classifier would cut the misclassification rate by over two-

fold, misclassifying only 124 men (67 FP and 57 FN) (Table 3). 

Current prostate cancer guidelines recommend that men with elevated PSA levels undergo 

prostate biopsy.93,94 A highly sensitive and specific urine test could potentially avoid hundreds of 

thousands of unnecessary biopsies annually.6 Upon validating the three-gene classifier (in urine 

samples) it could be used to identify a significantly  smaller population of men who should 

undergo confirmatory biopsy.  

 

Limitations of this study: As part of a larger forthcoming study of prognostic biomarkers in 

prostate cancer, the cohorts used are skewed towards low and intermediate risk patients. 

Therefore, the potential performance of this classifier on high grade/high stage cancers has not 



been evaluated. This limitation could be mitigated by limiting the use of such a classifier to men 

who lack high risk clinical and laboratory features, such as PSA levels above 10 ng/ml and/or 

suspicious findings on digital rectal examination.95 Likewise, although DNA methylation 

alterations are thought to be one of the first events in carcinogenesis,72,79,83 patients with familial 

prostate cancer show different patterns of DNA methylation than sporadic cases, and these rare 

patients may not be captured in the present study.96 In addition, unlike sensitivity and specificity, 

the large differences in number of benign and cancer samples used in this study preclude us from 

accurately determining NPV and PPV.97 These limitations will need to be addressed in 

subsequent investigations. Nevertheless, this work is unique in developing and validating a list of 

differentially and consistently hypermethylated genomic loci in prostate cancer, along with 

inexpensive assays that should be compatible with routine workflow in clinical laboratories.  
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Figure Legends: 

Figure 1: Genomic loci with cancer-specific hypermethylation. Fourteen cancer-specific DNA 

methylation alterations were identified with fold change of > 2 and Bonferroni-corrected p-value 

< 0.01 (highlighted in pink) in the training dataset. Changes in DNA methylation levels between 

benign and cancer samples are represented as a fold change, and their corresponding adjusted p-

values (Mann-Whitney U test after Bonferroni correction) are shown in this volcano plot. 

Figure 2: Methylation levels at GSTP1, CCDC181, HAPLN3, GSTM2, GAS6, RASSF1, and APC 

loci are far higher in cancer than in benign prostate tissue. Boxplots and ROC curves show the 

distribution of the normalized methylation levels in cancer (red) and benign (blue) samples for 

each of the top DNA methylation alterations in the training set. The area under the curve for each 

of the ROC curves is annotated with sensitivity and specificity corresponding to the best 

threshold (according to the “closest topleft” method). 

Figure 3: Independent validation of a three-gene binary cancer classifier 

(GAS6/GSTP1/HAPLN3). Panel A) An ROC curve of the three-gene classifier is shown, along 

with its AUC, sensitivity and specificity. Using the closest top-left method, we identified the 

model threshold of 0.917 for this three-gene model, which produced the specificity and 

sensitivity of 92% in the training dataset. Panel B) This binary classifier was tested on the 

validation dataset, and the classification of the benign and cancer samples is shown in blue and 

red, respectively. A red horizonal line is also plotted showing the model threshold from Figure 3, 

panel A, and only 14 out of 242 samples from the validation dataset were misclassified, showing 

error rate of < 6%.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 


