155 research outputs found

    Tungsten and Cobalt: Sheppard et al. Respond

    Get PDF

    Accurate Visuomotor Control below the Perceptual Threshold of Size Discrimination

    Get PDF
    Background: Human resolution for object size is typically determined by psychophysical methods that are based on conscious perception. In contrast, grasping of the same objects might be less conscious. It is suggested that grasping is mediated by mechanisms other than those mediating conscious perception. In this study, we compared the visual resolution for object size of the visuomotor and the perceptual system. Methodology/Principal Findings: In Experiment 1, participants discriminated the size of pairs of objects once through perceptual judgments and once by grasping movements toward the objects. Notably, the actual size differences were set below the Just Noticeable Difference (JND). We found that grasping trajectories reflected the actual size differences between the objects regardless of the JND. This pattern was observed even in trials in which the perceptual judgments were erroneous. The results of an additional control experiment showed that these findings were not confounded by task demands. Participants were not aware, therefore, that their size discrimination via grasp was veridical. Conclusions/Significance: We conclude that human resolution is not fully tapped by perceptually determined thresholds

    Recognizing Speech in a Novel Accent: The Motor Theory of Speech Perception Reframed

    Get PDF
    The motor theory of speech perception holds that we perceive the speech of another in terms of a motor representation of that speech. However, when we have learned to recognize a foreign accent, it seems plausible that recognition of a word rarely involves reconstruction of the speech gestures of the speaker rather than the listener. To better assess the motor theory and this observation, we proceed in three stages. Part 1 places the motor theory of speech perception in a larger framework based on our earlier models of the adaptive formation of mirror neurons for grasping, and for viewing extensions of that mirror system as part of a larger system for neuro-linguistic processing, augmented by the present consideration of recognizing speech in a novel accent. Part 2 then offers a novel computational model of how a listener comes to understand the speech of someone speaking the listener's native language with a foreign accent. The core tenet of the model is that the listener uses hypotheses about the word the speaker is currently uttering to update probabilities linking the sound produced by the speaker to phonemes in the native language repertoire of the listener. This, on average, improves the recognition of later words. This model is neutral regarding the nature of the representations it uses (motor vs. auditory). It serve as a reference point for the discussion in Part 3, which proposes a dual-stream neuro-linguistic architecture to revisits claims for and against the motor theory of speech perception and the relevance of mirror neurons, and extracts some implications for the reframing of the motor theory

    Critical animal and media studies: Expanding the understanding of oppression in communication research

    No full text
    Critical and communication studies have traditionally neglected the oppression conducted by humans towards other animals. However, our (mis)treatment of other animals is the result of public consent supported by a morally speciesist-anthropocentric system of values. Speciesism or anthroparchy, as much as any other mainstream ideologies, feeds the media and at the same time is perpetuated by them. The goal of this article is to remedy this neglect by introducing the subdiscipline of Critical Animal and Media Studies. Critical Animal and Media Studies takes inspiration both from critical animal studies – which is so far the most consolidated critical field of research in the social sciences addressing our exploitation of other animals – and from the normative-moral stance rooted in the cornerstones of traditional critical media studies. The authors argue that the Critical Animal and Media Studies approach is an unavoidable step forward for critical media and communication studies to engage with the expanded circle of concerns of contemporary ethical thinking

    Evolution and Optimality of Similar Neural Mechanisms for Perception and Action during Search

    Get PDF
    A prevailing theory proposes that the brain's two visual pathways, the ventral and dorsal, lead to differing visual processing and world representations for conscious perception than those for action. Others have claimed that perception and action share much of their visual processing. But which of these two neural architectures is favored by evolution? Successful visual search is life-critical and here we investigate the evolution and optimality of neural mechanisms mediating perception and eye movement actions for visual search in natural images. We implement an approximation to the ideal Bayesian searcher with two separate processing streams, one controlling the eye movements and the other stream determining the perceptual search decisions. We virtually evolved the neural mechanisms of the searchers' two separate pathways built from linear combinations of primary visual cortex receptive fields (V1) by making the simulated individuals' probability of survival depend on the perceptual accuracy finding targets in cluttered backgrounds. We find that for a variety of targets, backgrounds, and dependence of target detectability on retinal eccentricity, the mechanisms of the searchers' two processing streams converge to similar representations showing that mismatches in the mechanisms for perception and eye movements lead to suboptimal search. Three exceptions which resulted in partial or no convergence were a case of an organism for which the targets are equally detectable across the retina, an organism with sufficient time to foveate all possible target locations, and a strict two-pathway model with no interconnections and differential pre-filtering based on parvocellular and magnocellular lateral geniculate cell properties. Thus, similar neural mechanisms for perception and eye movement actions during search are optimal and should be expected from the effects of natural selection on an organism with limited time to search for food that is not equi-detectable across its retina and interconnected perception and action neural pathways

    The effect of the “rod-and-frame” illusion on grip planning in a sequential object manipulation task

    Get PDF
    We investigated the effect of visual context (i.e., a visual illusion) on the planning of a sequential object manipulation task. Participants (n = 13) had to grasp a rod embedded in a “rod-and-frame” illusion and insert the rod-end into a tight hole in a pre-defined way. The grip type (defined by start posture, either pronated or supinated; and end posture, either comfortable or uncomfortable) used to grasp the rod was registered as a macroscopic variable of motor planning. Different rod orientations forced the participants to switch between grip types. As expected, most participants switched between pronated and supinated start postures, such that they ended the movement with a comfortable end posture. As it has been argued that planning is dependent on visual context information, we hypothesized that the visual illusion would affect the specific rod orientation at which participants would switch into a different grip type. This hypothesis was confirmed. More specifically, the illusion affected the critical spatial information that is used for action planning. Collectively, these findings are the first to show an effect of an illusion on motor planning in a sequential object manipulation task

    Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System

    Get PDF
    Premi a l'excel·lència investigadora. Àmbit de les Ciències Socials. 2008In this study, spatial interpolation techniques have been applied to develop an objective climatic cartography of precipitation in the Iberian Peninsula (583,551 km2). The resulting maps have a 200m spatial resolution and a monthly temporal resolution. Multiple regression, combined with a residual correction method, has been used to interpolate the observed data collected from the meteorological stations. This method is attractive as it takes into account geographic information (independent variables) to interpolate the climatic data (dependent variable). Several models have been developed using different independent variables, applying several interpolation techniques and grouping the observed data into different subsets (drainage basin models) or into a single set (global model). Each map is provided with its associated accuracy, which is obtained through a simple regression between independent observed data and predicted values. This validation has shown that the most accurate results are obtained when using the global model with multiple regression mixed with the splines interpolation of the residuals. In this optimum case, the average R2 (mean of all the months) is 0.85. The entire process has been implemented in a GIS (Geographic Information System) which has greatly facilitated the filtering, querying, mapping and distributing of the final cartography

    Effect of terminal accuracy requirements on temporal gaze-hand coordination during fast discrete and reciprocal pointings

    Get PDF
    Background\ud \ud Rapid discrete goal-directed movements are characterized by a well known coordination pattern between the gaze and the hand displacements. The gaze always starts prior to the hand movement and reaches the target before hand velocity peak. Surprisingly, the effect of the target size on the temporal gaze-hand coordination has not been directly investigated. Moreover, goal-directed movements are often produced in a reciprocal rather than in a discrete manner. The objectives of this work were to assess the effect of the target size on temporal gaze-hand coordination during fast 1) discrete and 2) reciprocal pointings.\ud \ud Methods\ud \ud Subjects performed fast discrete (experiment 1) and reciprocal (experiment 2) pointings with an amplitude of 50 cm and four target diameters (7.6, 3.8, 1.9 and 0.95 cm) leading to indexes of difficulty (ID = log2[2A/D]) of 3.7, 4.7, 5.7 and 6.7 bits. Gaze and hand displacements were synchronously recorded. Temporal gaze-hand coordination parameters were compared between experiments (discrete and reciprocal pointings) and IDs using analyses of variance (ANOVAs).\ud \ud Results\ud \ud Data showed that the magnitude of the gaze-hand lead pattern was much higher for discrete than for reciprocal pointings. Moreover, while it was constant for discrete pointings, it decreased systematically with an increasing ID for reciprocal pointings because of the longer duration of gaze anchoring on target.\ud \ud Conclusion \ud \ud Overall, the temporal gaze-hand coordination analysis revealed that even for high IDs, fast reciprocal pointings could not be considered as a concatenation of discrete units. Moreover, our data clearly illustrate the smooth adaptation of temporal gaze-hand coordination to terminal accuracy requirements during fast reciprocal pointings. It will be interesting for further researches to investigate if the methodology used in the experiment 2 allows assessing the effect of sensori-motor deficits on gaze-hand coordination
    • …
    corecore