132 research outputs found

    Understanding the chemistry of the artificial electron acceptors PES, PMS, DCPIP and Wurster’s Blue in methanol dehydrogenase assays

    Get PDF
    Methanol dehydrogenases (MDH) have recently taken the spotlight with the discovery that a large portion of these enzymes in nature utilize lanthanides in their active sites. The kinetic parameters of these enzymes are determined with a spectrophotometric assay first described by Anthony and Zatman 55 years ago. This artificial assay uses alkylated phenazines, such as phenazine ethosulfate (PES) or phenazine methosulfate (PMS), as primary electron acceptors (EAs) and the electron transfer is further coupled to a dye. However, many groups have reported problems concerning the bleaching of the assay mixture in the absence of MDH and the reproducibility of those assays. Hence, the comparison of kinetic data among MDH enzymes of different species is often cumbersome. Using mass spectrometry, UV–Vis and electron paramagnetic resonance (EPR) spectroscopy, we show that the side reactions of the assay mixture are mainly due to the degradation of assay components. Light-induced demethylation (yielding formaldehyde and phenazine in the case of PMS) or oxidation of PES or PMS as well as a reaction with assay components (ammonia, cyanide) can occur. We suggest here a protocol to avoid these side reactions. Further, we describe a modified synthesis protocol for obtaining the alternative electron acceptor, Wurster’s blue (WB), which serves both as EA and dye. The investigation of two lanthanide-dependent methanol dehydrogenases from Methylorubrum extorquens AM1 and Methylacidiphilum fumariolicum SolV with WB, along with handling recommendations, is presented

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap

    The effect of artificial selection on phenotypic plasticity in maize

    Get PDF
    Remarkable productivity has been achieved in crop species through artificial selection and adaptation to modern agronomic practices. Whether intensive selection has changed the ability of improved cultivars to maintain high productivity across variable environments is unknown. Understanding the genetic control of phenotypic plasticity and genotype by environment (G × E) interaction will enhance crop performance predictions across diverse environments. Here we use data generated from the Genomes to Fields (G2F) Maize G × E project to assess the effect of selection on G × E variation and characterize polymorphisms associated with plasticity. Genomic regions putatively selected during modern temperate maize breeding explain less variability for yield G × E than unselected regions, indicating that improvement by breeding may have reduced G × E of modern temperate cultivars. Trends in genomic position of variants associated with stability reveal fewer genic associations and enrichment of variants 0–5000 base pairs upstream of genes, hypothetically due to control of plasticity by short-range regulatory elements

    Age-related changes in neural functional connectivity and its behavioral relevance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resting-state recordings are characterized by widely distributed networks of coherent brain activations. Disturbances of the default network - a set of regions that are deactivated by cognitive tasks and activated during passive states - have been detected in age-related disorders such as Alzheimer's or Parkinson's disease but alterations in the course of healthy aging still need to be explored.</p> <p>Results</p> <p>Using magnetoencephalography (MEG), the present study investigated how age-related functional resting-state brain connectivity links to cognitive performance in healthy aging in fifty-three participants ranging in age from 18 to 89 years. A beamforming technique was used to reconstruct the brain activity in source space and the interregional coupling was investigated using partial directed coherence (PDC). We found significant age-related alterations of functional resting-state connectivity. These are mainly characterized by reduced information input into the posterior cingulum/precuneus region together with an enhanced information flow to the medial temporal lobe. Furthermore, higher inflow in the medial temporal lobe subsystem was associated with weaker cognitive performance whereas stronger inflow in the posterior cluster was related to better cognitive performance.</p> <p>Conclusion</p> <p>This is the first study to show age-related alterations in subsystems of the resting state network that are furthermore associated with cognitive performance.</p

    Multimessenger Gravitational-wave Searches with Pulsar Timing Arrays:Application to 3C 66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and emit low-frequency gravitational radiation in the process. In this paper, we consider the galaxy 3C 66B, which was used as the target of the first multimessenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational-wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C 66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C 66B to less than (1.65 ± 0.02) × 109 M o˙ using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data over "blind"pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences

    Extensive Evolutionary Changes in Regulatory Element Activity during Human Origins Are Associated with Altered Gene Expression and Positive Selection

    Get PDF
    Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS) sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species

    Ginseng and ginkgo biloba effects on cognition as modulated by cardiovascular reactivity: a randomised trial

    Get PDF
    Background There is some evidence to suggest that ginseng and Ginkgo biloba can improve cognitive performance, however, very little is known about the mechanisms associated with such improvement. Here, we tested whether cardiovascular reactivity to a task is associated with cognitive improvement. Methodology/Principal findings Using a double-blind, placebo controlled, crossover design, participants (N = 24) received two doses of Panax Ginseng (500, 1000 mg) or Ginkgo Biloba (120, 240 mg) (N = 24), and underwent a series of cognitive tests while systolic, diastolic, and heart rate readings were taken. Ginkgo Biloba improved aspects of executive functioning (Stroop and Berg tasks) in females but not in males. Ginseng had no effect on cognition. Ginkgo biloba in females reversed the initial (i.e. placebo) increase in cardiovascular reactivity (systolic and diastolic readings increased compared to baseline) to cognitive tasks. This effect (reversal) was most notable after those tasks (Stroop and Iowa) that elicited the greatest cardiovascular reactivity during placebo. In males, although ginkgo also decreased cardiovascular readings, it did so from an initial (placebo) blunted response (i.e. decrease or no change from baseline) to cognitive tasks. Ginseng, on the contrary, increased cardiovascular readings compared to placebo. Conclusions/Significance These results suggest that cardiovascular reactivity may be a mechanism by which ginkgo but not ginseng, in females is associated with certain forms of cognitive improvement

    Very Low-mass Stellar and Substellar Companions to Solar-like Stars from MARVELS II: A Short-period Companion Orbiting an F Star with Evidence of a Stellar Tertiary And Significant Mutual Inclination

    Full text link
    We report the discovery via radial velocity of a short-period (P = 2.430420 \pm 0.000006 days) companion to the F-type main sequence star TYC 2930-00872-1. A long-term trend in the radial velocities indicates the presence of a tertiary stellar companion with P>2000P > 2000 days. High-resolution spectroscopy of the host star yields T_eff = 6427 +/- 33 K, log(g) = 4.52 +/- 0.14, and [Fe/H]=-0.04 +/- 0.05. These parameters, combined with the broad-band spectral energy distribution and parallax, allow us to infer a mass and radius of the host star of M_1=1.21 +/- 0.08 M_\odot and R_1=1.09_{-0.13}^{+0.15} R_\odot. We are able to exclude transits of the inner companion with high confidence. The host star's spectrum exhibits clear Ca H and K core emission indicating stellar activity, but a lack of photometric variability and small v*sin(I) suggest the primary's spin axis is oriented in a pole-on configuration. The rotational period of the primary from an activity-rotation relation matches the orbital period of the inner companion to within 1.5 \sigma, suggesting they are tidally locked. If the inner companion's orbital angular momentum vector is aligned with the stellar spin axis, as expected through tidal evolution, then it has a stellar mass of M_2 ~ 0.3-0.4 M_\odot. Direct imaging limits the existence of stellar companions to projected separations < 30 AU. No set of spectral lines and no significant flux contribution to the spectral energy distribution from either companion are detected, which places individual upper mass limits of M < 1.0 M_\odot, provided they are not stellar remnants. If the tertiary is not a stellar remnant, then it likely has a mass of ~0.5-0.6 M_\odot, and its orbit is likely significantly inclined from that of the secondary, suggesting that the Kozai-Lidov mechanism may have driven the dynamical evolution of this system.Comment: 37 pages, 7 tables, 21 figures, Accepted in A

    Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background

    Get PDF
    The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational-wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTAs that constitute the International Pulsar Timing Array (IPTA). We show that despite making different modeling choices, there is no significant difference in the GWB parameters that are measured by the different PTAs, agreeing within 1σ. The pulsar noise parameters are also consistent between different PTAs for the majority of the pulsars included in these analyses. We bridge the differences in modeling choices by adopting a standardized noise model for all pulsars and PTAs, finding that under this model there is a reduction in the tension in the pulsar noise parameters. As part of this reanalysis, we "extended" each PTA's data set by adding extra pulsars that were not timed by that PTA. Under these extensions, we find better constraints on the GWB amplitude and a higher signal-to-noise ratio for the Hellings–Downs correlations. These extensions serve as a prelude to the benefits offered by a full combination of data across all pulsars in the IPTA, i.e., the IPTA's Data Release 3, which will involve not just adding in additional pulsars but also including data from all three PTAs where any given pulsar is timed by more than a single PTA
    corecore