5,530 research outputs found

    Clinical features, pathophysiology, and treatment of levodopa-induced dyskinesias in Parkinson's disease

    Get PDF
    Dyskinetic disorders are characterized by excess of motor activity that may interfere with normal movement control. In patients with Parkinson's disease, the chronic levodopa treatment induces dyskinetic movements known as levodopa-induced dyskinesias (LID). This paper analyzed the pathophysiology, clinical manifestations, pharmacological treatments, and surgical procedures to treat hyperkinetic disorders. Surgery is currently the only treatment available for Parkinson's disease that may improve both parkinsonian motor syndrome and LID. However, this paper shows the different mechanisms involved are not well understood

    Pollen segmentation and feature evaluation for automatic classification in bright-field microscopy

    Get PDF
    14 págs.; 10 figs.; 7 tabs.; 1 app.© 2014 Elsevier B.V. Besides the well-established healthy properties of pollen, palynology and apiculture are of extreme importance to avoid hard and fast unbalances in our ecosystems. To support such disciplines computer vision comes to alleviate tedious recognition tasks. In this paper we present an applied study of the state of the art in pattern recognition techniques to describe, analyze, and classify pollen grains in an extensive dataset specifically collected (15 types, 120 samples/type). We also propose a novel contour-inner segmentation of grains, improving 50% of accuracy. In addition to published morphological, statistical, and textural descriptors, we introduce a new descriptor to measure the grain's contour profile and a logGabor implementation not tested before for this purpose. We found a significant improvement for certain combinations of descriptors, providing an overall accuracy above 99%. Finally, some palynological features that are still difficult to be integrated in computer systems are discussed.This work has been supported by the European project APIFRESH FP7-SME-2008-2 ‘‘Developing European standards for bee pollen and royal jelly: quality, safety and authenticity’’ and we would like to thank to Mr. Walter Haefeker, President of the European Professional Beekeepers Association (EPBA). J. Victor Marcos is a ‘‘Juan de la Cierva’’ research fellow funded by the Spanish Ministry of Economy and Competitiveness. Rodrigo Nava thanks Consejo Nacional de Ciencia y Tecnología (CONACYT) and PAPIIT Grant IG100814.Peer Reviewe

    The impact of silent vascular brain burden in cognitive impairment in Parkinson's disease

    Get PDF
    White matter hyperintensities (WMHs) detected by magnetic resonance imaging (MRI) of the brain are associated with dementia and cognitive impairment in the general population and in Alzheimer's disease. Their effect in cognitive decline and dementia associated with Parkinson's disease (PD) is still unclear. METHODS: We studied the relationship between WMHs and cognitive state in 111 patients with PD classified as cognitively normal (n = 39), with a mild cognitive impairment (MCI) (n = 46) or dementia (n = 26), in a cross-sectional and follow-up study. Cognitive state was evaluated with a comprehensive neuropsychological battery, and WMHs were identified in FLAIR and T2-weighted MRI. The burden of WMHs was rated using the Scheltens scale. RESULTS: No differences in WMHs were found between the three groups in the cross-sectional study. A negative correlation was observed between semantic fluency and the subscore for WMHs in the frontal lobe. Of the 36 non-demented patients re-evaluated after a mean follow-up of 30 months, three patients converted into MCI and 5 into dementia. Progression of periventricular WMHs was associated with an increased conversion to dementia. A marginal association between the increase in total WMHs burden and worsening in the Mini Mental State Examination was encountered. CONCLUSIONS: White matter hyperintensities do not influence the cognitive status of patients with PD. Frontal WMHs have a negative impact on semantic fluency. Brain vascular burden may have an effect on cognitive impairment in patients with PD as WMHs increase overtime might increase the risk of conversion to dementia. This finding needs further confirmation in larger prospective studies

    Operational experience, improvements, and performance of the CDF Run II silicon vertex detector

    Full text link
    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, and the improvements made along the way to ensure their optimal performance for collecting high quality physics data. In addition, we describe the quantities and methods used to monitor radiation damage in the sensors for optimal performance and summarize the detector performance quantities important to CDF's physics program, including vertex resolution, heavy flavor tagging, and silicon vertex trigger performance.Comment: Preprint accepted for publication in Nuclear Instruments and Methods A (07/31/2013

    Early outcome of a 31-gene expression profile test in 86 AJCC stage IB-II melanoma patients. A prospective multicentre cohort study

    Get PDF
    Background: The clinical and pathological features of primary melanoma are not sufficiently sensitive to accurately predict which patients are at a greater risk of relapse. Recently, a 31-gene expression profile (DecisionDx-Melanoma) test has shown promising results. Objectives: To evaluate the early prognostic performance of a genetic signature in a multicentre prospectively evaluated cohort. Methods: Inclusion of patients with AJCC stages IB and II conducted between April 2015 and December 2016. All patients were followed up prospectively to assess their risk of relapse. Prognostic performance of this test was evaluated individually and later combined with the AJCC staging system. Prognostic accuracy of disease-free survival was determined using Kaplan-Meier curves and Cox regression analysis. Results of the gene expression profile test were designated as Class 1 (low risk) and Class 2 (high risk). Results: Median follow-up time was 26 months (IQR 22-30). The gene expression profile test was performed with 86 patients; seven had developed metastasis (8.1%) and all of them were in the Class 2 group, representing 21.2% of this group. Gene expression profile was an independent prognostic factor for relapse as indicated by multivariate Cox regression analysis, adjusted for AJCC stages and age. Conclusions: This prospective multicentre cohort study, performed in a Spanish Caucasian cohort, shows that this 31-gene expression profile test could correctly identify patients at early AJCC stages who are at greater risk of relapse. We believe that gene expression profile in combination with the AJCC staging system could well improve the detection of patients who need intensive surveillance and optimize follow-up strategies

    IFE Plant Technology Overview and contribution to HiPER proposal

    Full text link
    HiPER is the European Project for Laser Fusion that has been able to join 26 institutions and signed under formal government agreement by 6 countries inside the ESFRI Program of the European Union (EU). The project is already extended by EU for two years more (until 2013) after its first preparatory phase from 2008. A large work has been developed in different areas to arrive to a design of repetitive operation of Laser Fusion Reactor, and decisions are envisioned in the next phase of Technology Development or Risk Reduction for Engineering or Power Plant facilities (or both). Chamber design has been very much completed for Engineering phase and starting of preliminary options for Reactor Power Plant have been established and review here

    Asymmetric Dark Matter and Dark Radiation

    Get PDF
    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum.Comment: 22 pages, 5 figures, to be published in JCAP, minor changes to match version to be publishe

    Safety and dose modification for patients receiving niraparib

    Get PDF
    Background: Niraparib is a poly(ADP-ribose) polymerase (PARP) inhibitor approved in the United States and Europe for maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in complete or partial response to platinum-based chemotherapy. In the pivotal ENGOT-OV16/NOVA trial, the dose reduction rate due to TEAE was 68.9%, and the discontinuation rate due to TEAE was 14.7%, including 3.3% due to thrombocytopenia. A retrospective analysis was performed to identify clinical parameters that predict dose reductions. Patients and methods: All analyses were performed on the safety population, comprising all patients who received at least one dose of study drug. Patients were analyzed according to the study drug consumed (ie, as treated). A predictive modeling method (decision trees) was used to identify important variables for predicting the likelihood of developing grade ≥3 thrombocytopenia within 30 days after the first dose of niraparib and determine cutoff points for chosen variables. Results: Following dose modification, 200 mg was the most commonly administered dose in the ENGOT-OV16/NOVA trial. Baseline platelet count and baseline body weight were identified as risk factors for increased incidence of grade ≥3 thrombocytopenia. Patients with a baseline body weight <77 kg or a baseline platelet count <150,000/μL in effect received an average daily dose approximating 200 mg (median = 207 mg) due to dose interruption and reduction. Progression-free survival in patients who were dose reduced to either 200 mg or 100 mg was consistent with that of patients who remained at the 300 mg starting dose. Conclusions: The analysis presented suggests that patients with baseline body weight of < 77 kg or baseline platelets of < 150,000/μL may benefit from a starting dose of 200 mg per day. (ClinicalTrials.gov ID: NCT01847274)
    corecore