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BACKGROUND AND PURPOSE 
White matter hyperintensities (WMHs) detected by magnetic resonance imaging (MRI) 

of the brain are associated with dementia and cognitive impairment in the general 

population and in Alzheimer's disease. Their effect in cognitive decline and dementia 

associated with Parkinson's disease (PD) is still unclear. 

 

METHODS 

We studied the relationship between WMHs and cognitive state in 111 patients with PD 

classified as cognitively normal (n = 39), with a mild cognitive impairment (MCI) (n = 

46) or dementia (n = 26), in a cross-sectional and follow-up study. Cognitive state was 

evaluated with a comprehensive neuropsychological battery, and WMHs were identified 

in FLAIR and T2-weighted MRI. The burden of WMHs was rated using the Scheltens 

scale. 

 

RESULTS 

No differences in WMHs were found between the three groups in the cross-sectional 

study. A negative correlation was observed between semantic fluency and the subscore 

for WMHs in the frontal lobe. Of the 36 non-demented patients re-evaluated after a 

mean follow-up of 30 months, three patients converted into MCI and 5 into dementia. 

Progression of periventricular WMHs was associated with an increased conversion to 

dementia. A marginal association between the increase in total WMHs burden and 

worsening in the Mini Mental State Examination was encountered. 

 

CONCLUSIONS 

White matter hyperintensities do not influence the cognitive status of patients with PD. 

Frontal WMHs have a negative impact on semantic fluency. Brain vascular burden may 

have an effect on cognitive impairment in patients with PD as WMHs increase overtime 

might increase the risk of conversion to dementia. This finding needs further 

confirmation in larger prospective studies. 
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INTRODUCTION 

 

Dementia occurs in nearly 80% of patients with Parkinson's disease (PD) [1,2]. It has 

been associated with cortical Lewy bodies (LB), amyloid plaques, neurofibrilary tangles 

[3], and cholinergic deficit [4]. Cerebrovascular (CV) lesions have been proposed to 

influence dementia in PD, although this remains to be clearly demonstrated [5–8]. Silent 

vascular lesions, identified as white matter hyperintensities (WMHs) [9], are associated 

with dementia in the general population [10–12], and they are thought to aggravate 

cognitive impairment in Alzheimer's disease (AD) [13] and LB disease [14]. Moreover, 

WMHs are linked to an in-creased risk of cognitive decline in the elderly and to mild 

cognitive impairment (MCI) in the general population [15]. The relationship between 

dementia [16–18] and MCI [16,17,19] in PD and WMHs is controversial. Therefore, we 

analyzed WMHs in cerebral magnetic resonance images (MRI) from a large cohort of 

patients with PD using a cross-sectional and longitudinal design, to assess the possible 

relationship between silent vascular lesions and dementia or MCI in this population. 

 

 

 

PATIENTS AND METHODS 

 

The Ethics Committee for Medical Research of the Clinic Universidad de Navarra 

approved the study, and all participants, or legal representatives, provided their written 

informed consent. 

 

Patients with PD [21] over 60 years of age and with disease duration of at least 10 years 

were recruited. Patients with other neurological or psychiatric disorders, severe systemic 

or vascular disease (stroke, ischaemic heart disease, atherosclerosis, arterial by-pass 

surgery), or previous cerebral surgery were excluded. Other vascular risk factors 

obtained by clinical history, interview, and blood tests were recorded but did not 

constitute exclusion criteria (Table 1). The Hoehn & Yahr scale and the Unified 

Parkinson's Disease Rating Scale – motor section (UPDRS-III) were used to evaluate 

disease severity. Patients were classified as showing normal cognition (PDCN), mild 

cognitive impairment (PD-MCI), or dementia (PDD). DSM-IV criteria were applied to 

diagnose dementia. MCI was diagnosed in non-demented patients when (i) cognitive 

decline was reported by either the patient or informant, or observed by the neurologist, 

but it did not interfere significantly with functional independence of the patient; (ii) the 

patient scored more than 1.5 standard deviations below the mean for age- and 

education-appropriate test norms in at least two tests in the neuropsychological battery, 

either within a single cognitive domain or across different cognitive domains [22]. 

 

Parkinson's disease patients without cognitive symptoms and with normal performance 

in the battery tests were considered as PDCN. For the follow-up study, PDCN and PD-

MCI patients were re-evaluated 12–48 months after initial assessment. 

 

The primary aim of this study was to determine the relationship between silent vascular 

lesions identified as WMHs and cognitive impairment in patients with PD using cross-

sectional and longitudinal approaches. A secondary objective was to evaluate how the 

distribution of WMHs might affect specific cognitive domains. 

 

 

 



Neuropsychological evaluations 

 

A trained neuropsychologist performed the following evaluations in patients under the 

effect of dopaminergic treatment as published elsewhere [23]. Global cognitive function 

was evaluated using the Mini Mental State Examination (MMSE) and the Blessed 

Dementia Scale. Daily activities were rated using the Interview for Deterioration in 

Daily Living in Dementia scale (IDDD). Depression was assessed by the Yesavage 

Geriatric Depression Rating Scale (GDS). Different cognitive domains were evaluated 

as follows: verbal episodic memory – Buschke Free and Cued Selective Reminding Test 

and CERAD word list; visual episodic memory – copy and delayed recall of two simple 

figures (Massachusetts General Hospital of Boston); language – Boston naming test; 

attention and executive functions – Raven progressive matrices, semantic “animals” and 

phonetic “words starting with p” verbal fluency, trail making test A and B and the 

Stroop test. The tests and the diagnostic criteria were used to determine the cognitive 

state of each subject. 

 

 

Magnetic resonance imaging 

 

A brain MRI study was carried out using a 1.5-T MRI scanner MagnetonSP (Siemens, 

Erlangen, Germany), including FLAIR (TR/TE/TI:8150/125/2500, flip angle 15% 

matrix size 256 x 179, yielding 10 coronal slices with a slice thickness of 5 mm and in-

plane resolution of 0.78 x 0.78 mm), T2- and T1-weighted MPRAGE sequences. Silent 

vascular brain burden was analyzed as the presence of WMHs, which were defined as 

hyperintense lesions in both FLAIR and T2-weighted axial MRI sequences. In each 

patient, the MRI, and the neuropsychological and physical evaluations were performed 

within the same week. Throughout the study, there was no change in the MRI scanner 

or in the methodology applied to obtain the images. 

 

 

White matter hyperintensities rating 

 

White matter hyperintensities were assessed by two trained neurologists blind to the 

cognitive diagnosis using the semiquantitative visual rating scale of Scheltens [24]. The 

scale is divided into four subscales rating different brain regions: periventricular 

hyperintensities (PVH), basal ganglia hyperintensities (BGH), deep white matter, which 

in this article is called lobar (lobar-WMHs, with its frontal, temporal, parietal, and 

occipital subscores), and infratentorial. The total score was obtained by the sum of the 

Scheltens subscores. Rating of WMHs was performed by evaluating the number, size, 

and localization of the lesions (Data S1). 

 

 

Statistical analysis 

 

Clinical characteristics and scale scores in the cross-sectional study were analyzed using 

Fisher's exact test for categorical variables, ANOVA for continuous normally 

distributed variables, and the Kruskal–Wallis test and a percentile bootstrap method for 

non-normal distribution. The normal distribution of the residuals and the 

homoscedasticity were tested. For the WMHs subscales, we applied a multivariate 

normative comparison [25] followed by a chi-square analysis to test whether the 



percentage of cases with higher WMHs scores in cognitively impaired groups differed 

from an expected percentage of 5% (type I error). 

 

To evaluate how the distribution of WMHs might affect specific cognitive domains, a 

nonparametric Spearman correlation analysis was performed and adjusted for multiple 

comparisons with Bonferroni's correction. The significant P-values corrected for 

multiple comparisons were selected and assessed in a multiple linear regression model 

which was adjusted for confounding variables, taking each of the cognitive test scores 

as the dependent variable. 

 

For the prospective study, an association between the change in the cognitive category 

(cognitively normal, MCI, or dementia) and the increase in the different WMHs 

Scheltens scores was tested by a Fisher's exact test. A mixed two-factor general linear 

model was employed to assess the changes in the cognitive results as a function of the 

baseline WMHs lesion burden or of the increase in the radiological score. A normal 

distribution of the residuals was determined and Mauchly's test of sphericity was 

performed. To normalize the data, a power transformation was estimated with the 

Applied Linear Regression statistics package using the “R” programming language and 

for the robust methods R.R. The P-values obtained for the different Scheltens subscales 

were corrected with Bonferroni's correction. Wilcox's robust statistics functions package 

was used. The statistical analysis was performed using SPSS 15.0 (SPSS15, Inc., 

Chicago IL, USA) and R 2.11.1. (Development Core Team. R: A language and 

environment for statistical computing R Foundation for Statistical Computing, Vienna, 

Austria). 

 

 

 

RESULTS 

 

One hundred and eleven patients with PD classified as PDCN (n = 39), PD-MCI (n = 

46), or PDD (n = 26) were studied. The general demographic and clinical features are 

summarized in Table 1. Patients with dementia were older, had higher depression 

scores, and more severe parkinsonism than the PDCN and PD-MCI groups. In addition, 

the PDCN group was more educated and showed lower depression scores than the PD-

MCI patients. The prevalence of vascular risk factors was evenly distributed among the 

three groups of patients. 

 

The Scheltens scale scores for the three groups of patients are summarized in Table 2. 

Owing to shortage of lesions in the parietal and occipital lobes, WMHs in both lobes 

were merged. The inter-rater and intra-rater agreements were measured using the intra-

class correlation coefficient. The resulting values for the different scores ranged from 

0.73 to 0.93 for the former and from 0.89 to 0.97 for the later, indicating a high degree 

of agreement. No difference in the total score or in the subcores was found amongst the 

three groups of patients (Table 2). The multivariate normative comparison for the 

subscores found that three patients with dementia and five patients with MCI had higher 

scores than PDCN patients. However, this number of cases was not significantly 

different from the expected (P = 0.12 for PD-MCI and P = 0.13 for PDD patients). 

 

The infratentorial score was not considered for correlation studies and for follow-up 

because of the scarce number of patients presenting WMHs in this region (Table 2). In 

an ordinal logistic regression controlling for the education level attained, age, UPDRS-



III, and GDS scores, the total WMHs score had no effect on cognitive status (P = 0.58, 

Nagelkerke R-square of the complete model R = 0.58). None of the WMHs subscores 

(lobar, PVH, and BGH) were either significant. Furthermore, the relationship between 

the total score and MMSE was tested in a linear multiple regression model adjusted for 

age, attained educational level, and GDS score, and no predictive value was found (P = 

0.70; R2 = 0.36). 

 

The relationship between the subscores for the distinct lobar regions (frontal, temporal, 

and parieto-occipital) and the neuropsychological scores for the tests evaluating each 

cognitive domain was assessed by nonparametric correlations (Table 3). There was a 

negative correlation between semantic fluency and the frontal score after Bonferroni–

Holmes correction was applied (P = 0.01; r = -0.29). To further study this association, 

the frontal individual scores were grouped into four clinical categories according to the 

lesion burden (absent = 0, mild = 1–2, moderate = 3–4, and severe = 5–6) and entered in 

a linear regression model as an independent variable adjusting for confounding factors 

(educational level, age, and GDS score). In this analysis, semantic fluency was also 

associated with the frontal score (P = 0.048). Although no linear trend could be found 

between the four categories and semantic fluency scores (P = 0.057), the category with 

severe lesion burden had a significantly lower semantic fluency score than the other 

categories grouped (absent, mild, and moderate) indicating a threshold effect of frontal 

WMHs burden on semantic fluency (P = 0.008; difference, -2.83 words; 95%CI, -0.75 

to -4.85). 

  

 

  

LONGITUDINAL STUDY 

 

From the initial cohort of 86 patients with PD, 36 were re-evaluated 12–48 months after 

the initial assessment (12–24 months, nine patients, 24–36 months, 18 patients; 36–48 

months, nine patients; mean = 30.1  months) (Fig. 1). The clinical features of this cohort 

were not different from those of the non-demented patients excluded from this analysis 

(n = 49). 

 

Three PDCN patients progressed to MCI and 1 to dementia. Four patients with PD-MCI 

progressed to dementia. None of the PD-MCI patients normalized to PDCN. In the 

group followed between 12 and 24 months, no patient showed a change in cognitive 

diagnosis. In patients followed between 24 and 36 months, one subject progresses from 

MCI to dementia, and another one from cognitively normal to MCI. After 36–48 

months, three patients progressed from MCI to dementia, two from cognitively normal 

to MCI, and one patient from cognitively normal to dementia. The three groups of 

patients did not show differences at baseline in MMSE score (P = 0.14) or age (P = 

0.67). 

 

A number of patients showed progression of WMHs scores (Table 4). Increasing total, 

lobar, and BGH subscores of the Scheltens scale were not associated with progression 

to a more cognitively impaired diagnostic category (MCI or dementia). However, an 

increase in the PVH subscore was associated with an increased conversion to dementia 

after adjusting for multiple comparisons (P-value corrected, 0.02). There was no 

association between an increase in the total WMHs and the change in MMSE 

performance adjusted for age (P-value for interaction = 0.054). This result was also 

observed for the lobar-WMHs score, but the effect disappeared after correction for 



multiple comparisons (corrected P-value for interaction = 0.13). Changes in semantic 

verbal fluency with respect to baseline were not significantly affected by an increase in 

the frontal Scheltens subscore (P = 0.21). 

 

 

 

DISCUSSION 

 

The primary finding of this study is that WMHs are not different in the distinct 

cognitive states of PD patients with no prior relevant vascular disease. However, there is 

a mild impact of the increment of WMHs (periventricular and total burden) in the 

progression of cognitive decline. Owing to the small sample size and the excessive 

attrition of the sample at follow-up, this finding needs to be interpreted with caution and 

needs further confirmation in larger longitudinal studies. In addition, vascular burden 

may have a mild effect on certain tasks of executive performance, as witnessed by the 

negative correlation between semantic fluency and the frontal subscore on the Scheltens 

scale. 

 

Although cognitive decline in PD is associated with cholinergic degeneration [26], 

limbic and neocortical LB, AD, and vascular pathology [27], the link between these 

factors, neuronal loss, and clinical symptoms is ill defined [28]. CV pathology 

constitutes a risk factor for dementia and cognitive decline in the general population 

[29], and it also appears to be relevant in AD [13]. However, whilst CV lesions have 

been proposed to play an important role in PD dementia, this relationship remains to be 

fully demonstrated [5–8]. Indeed, large neuropathological studies have failed to confirm 

a significant influence of ischaemic CV alterations on cognitive impairment in patients 

with PD [5], and cognitive deficiencies appear to be independent of coexisting CV 

pathology, except when it is severe [6]. 

 

Silent vascular lesions, identified as WMHs in MRI images, probably correspond to 

areas of demyelization and astrocytic gliosis. In addition to the neuronal dysfunction 

caused by the neurodegenerative process, these white matter pathologies might 

aggravate the already-defective neuronal connectivity and therefore increase the 

cognitive dysfunction. Thus, WMHs have been associated with dementia in the general 

population [10–12, 30–33] and also represents an aggravating factor in cognitive 

impairment in AD [13] and LB dementia [14]. Moreover, WMHs have been related to a 

high risk of MCI and a greater decline in global cognitive performance, executive 

function, and processing speed [15]. In PD, the relationship between WMHs, MCI, and 

dementia remains unclear [16–19,23,34]. 

 

Cross-sectional studies have reported that WMHs burden and cognitive impairment are 

not associated in PD [16,19,23,34]. Actually, WMHs was not found to contribute to 

either MCI or attention-executive dysfunction in a cohort of newly diagnosed and 

untreated patients with PD [19], and WMHs severity was similar in advanced PD 

patients with dementia, MCI or with no cognitive disability [16]. 

 

By contrast, other studies reported more periven-tricular and deep WMHs in demented 

than in non-demented patients with PD [17,18], and an association between WMHs and 

lower MMSE scores [18]. These findings should be interpreted with caution, as in 

addition to the small sample size analyzed, there was no difference in the WMHs 



burden in PD patients with dementia when compared to control subjects, whilst non-

demented patients with PD exhibited fewer WMHs than controls [18]. 

 

We performed a cross-sectional and longitudinal study in a larger cohort of PD patients 

with more than 10 years of disease evolution, as this profile best represents the PD 

population at the highest risk of cognitive decline [35]. Although no differences in the 

WMHs scores in any of the Scheltens subscales were evident between different 

cognitive states in the cross-sectional study, in what we believe to be the first 

longitudinal study of its kind, an increment in periventricular WMHs was associated 

with an increased conversion to dementia. Moreover, a worsening in the MMSE was 

marginally associated with an increment in the total WMHs burden. Even though the 

follow-up period is long, our results are limited by the small number of patients, and 

therefore, larger prospective studies should be carried out. 

 

It has to be admitted that the image acquisition was performed in slice sections 5 mm 

apart, and very small lesions might have not been captured. However, this applies 

equally to every patient, and we do not believe it has a significant role in the outcome of 

this study. In addition, there was no change in the MRI scanner or in the methodology 

applied to obtain the images throughout the study, and the WMHs burden was evaluated 

blindly by two trained neurologists with a high inter- and intra-rater agreement. 

 

We also observed a negative correlation between semantic fluency and the frontal score, 

which persisted in a linear regression model analysis. In keeping with this finding, 

increased white matter abnormalities in frontal and cingulate regions are associated with 

executive dysfunction in MCI [36], and impairment in semantic fluency is more severe 

in non-demented PD patients with significant vascular lesions [37]. Our finding may 

reflect the dysfunction of the frontostriatal circuit in PD because of degeneration of the 

dopaminergic system that confers a selective vulnerability for specific executive 

functions whenever addtional lesions, as silent vascular insults, take place in the frontal 

lobe. 

 

In conclusion, the first longitudinal study evaluating the role of silent vascular lesions in 

the cognitive state of patients with PD indicates that although WMHs are not different 

in the distinct cognitive states, there is a mild impact of the increment of WMHs in the 

progression of cognitive decline. In addition, frontal WMHs in patients with PD have a 

negative impact on executive function. Prospective studies with larger cohorts and 

longer follow-up periods are guaranteed. 
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Table 1. General characteristics of the patients 

 
PDCN 

(n = 39) 

PD-MCI 

(n = 46) 

PDD 

(n = 26) 

p-values 

PD-groups 

Age
a
 68.0 (8) 72 (6) 74.0 (6) 0.001

b,c
 

PD evolution (years)
d
 13.3 (3.6) 13.4 (4.9) 14 (4.9) 0.959 

Gender (%men) 28 (71.8%) 28 (60.9%) 14 (53.8%) 0.314 

Levodopa equivalent 

dose
e
 (mg/day)

a
 

1000.0 (549) 1105.0 (604) 1000.0 (478) 0.627 

UPDRS-III “ON”
a
 12.0 (10.0) 17.0 (12.0) 20.0 (18.0) 0.032

b
 

UPDRS-III “OFF”
d
 32.28 (9.35) 34.16 (11.07) 44.61 (11.14) <0.001

b,c
 

Hoehn and Yahr
d
 2.83 (0.81) 2.84 (0.68) 3.6 (0.76) <0.001

b,c
 

GDS
a
 6.0 (6.0) 10.0 (7.0) 14.0 (5.0) <0.001

b,c,f
 

Education (years)
a
 10.0 (10.0) 5 (5.0) 5.0 (0.0) <0.001

b,c,f
 

DM 16.7% 10.3% 15.0% 0.761 

Hypertension 60.7% 52.9% 33.3% 0.150 

Hypercholesterolemia 16.7% 26.7% 10.5% 0.419 

Smoking 10.5% 21.1% 25.5% 0.564 

GDS, Yesavage Geriatric Depression Rating Scale; UPDRS-III, Unified Parkinson's 

Disease Rating Scale-motor section; DM, diabetes mellitus; 
a
Median (interquartile 

range); 
b
Significant differences between the PDD and the PDCN groups; 

c
Significant 

differences between the PDD and the PD-MCI groups; 
d
Mean (standard deviation); 

e
The levodopa equivalent daily dose was calculated for each patient as follows: L-dopa 

daily dose (mg) = L-dopa (mg) + L-dopa retard (mg)*0.77. In the case of 

entacapone/tolcapone co-administration, the L-dopa dose was multiplied by 1.33. For 

dopaminergic agonists, the formula used was Rotigotine (mg)*5 + Ropirinole (mg)* 20 

+ Pramiprexole (mg)*67 + Cabergoline (mg)*67 + Pergolide (mg)*100 [20]; 
f
Significant differences between the PDCN and the PD-MCI groups. 

 

 

 

 

 

 

 



Table 2. Summary of the Scheltens scale scores in the three groups of patients with PD 

 Total* PVH BGH 
Lobar-

WMHs 
Frontal Temporal 

Parieto-

occipital 
Infratentorial 

PDCN 

5           

(1–11) 

0  

(0–1) 

0  

(0–2) 

3  

(1–8) 

2 

(1–4) 

0 

(0–1) 

0  

(0–2) 

0  

(0–0) 

85.71% 28.6% 40.5% 84.2% 83.3% 45.23% 47.6% 17.07% 

PD-

MCI 

4.5       

(1–17) 

0         

(0–1.25) 

0  

(0–3) 

4  

(1–11.25) 

2  

(1–6) 

0  

(0–1) 

1  

(0–4) 

0  

(0–0) 

89.13% 41.3% 41.3% 87.3% 86.9% 45.65% 56.5% 17.77% 

PDD 

6  

(3–11) 

0  

(0–2) 

0            

(0–1.25) 

5  

(3–10.25) 

4            

(1.75–5) 

0.5  

(0–1) 

1  

(0–4) 

0  

(0–0.25) 

88.46% 46.2% 34.6% 89.5% 88.5% 50.00% 57.7% 20.22% 

PVH, periventricular hyperintensities; WMHs, white matter hyperintensities; BGH, basal 

ganglia hyperintensities; *P = 0.62, Uncorrected P-values obtained using a Kruskal–Wallis test; 

Median (1st and 3rd quartile); % of patients showing WMHs in each cerebral region; Lobar-

WMHs: it is the sum of the frontal, temporal, and parieto-occipital white matter lesions; Total: 

it is the sum of the subscores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Summary of the correlation coefficients obtained between the Scheltens subscores 

assessing the white matter hyperintensities in the different brain areas and the 

neuropsychological tests scores evaluating their corresponding cognitive function. 

Scheltens 

subscale 
Cognitive domain Neuropsychological test 

Nonparametric 

correlation 

(corrected P-value) 

Frontal 
Attention and executive 

functions 
Raven progressive matrices 0.272 

  Semantic verbal fluency
a
 0.01 (r = -0.292) 

  Phonetic verbal fluency 1.0 

  Trail making A 1.0 

  
Stroop test color-word direct 

score 
1.0 

Temporal Verbal episodic memory Free recalls of Buschke 1.0 

  CERAD word list 1.0 

 Visual episodic memory 
Delayed recall of a geometric 

figure 
1.0 

 Language Boston naming test 0.284 

Parieto-

occipital 
Visual episodic memory Copy of a geometric figure 1.0 

  
Delayed recall of a geometric 

figure 
1.0 

 
Attention and executive 

functions 
Raven progressive matrices 1.0 

  Semantic verbal fluency
a
 0.185 

  Phonetic verbal fluency 1.0 

  Trail making A 1.0 

  
Stroop test color-word direct 

score 
1.0 

a
Verbal fluency in 1 min; Significant results were also encountered for fluency in 30 s; 

All the P-values are corrected using Bonferroni's correction. 

 

 

 

 

 

 

 



Table 4. Summary of the evolution of the Scheltens scale’s scores 

(unchanged/increased) and of the cognitive state (CN/MCI/D) over the follow-up              

(12–48 months) 

 Scale score follow-up Cognitive state follow-up 

Global WMHs Scheltens Unchanged 7 CN at baseline, 0 converted 

n = 36 n = 14 
7 MCI at baseline, 2 converted 

into D 

P = 0.68 
Increased  

n = 22 

11 CN at baseline, 3 converted 

into MCI and 1 into D 

 3 (2–5)
a
 

11 MCI at baseline, 2 converted 

into D 

Lobar-WMHs Scheltens Unchanged 8 CN at baseline, 0 converted 

n = 36 n = 16 
8 MCI at baseline, 2 converted 

into D 

P = 1.0 
Increased  

n = 20 

10 CN at baseline, 3 converted 

into MCI and 1 into D 

 3 (1–3.5)
a
 

10 MCI at baseline, 2 converted 

into D 

PV subscale Unchanged 
12 CN at baseline, 1 converted 

into D 

n = 36 n = 23 
11 MCI at baseline, 1 converted 

into D 

P = 0.020 Increased 
6 CN at baseline, 3 converted 

into MCI 

 n = 13 
7 MCI at baseline, 3 converted 

into D 

 1 (1–2)
a
  

BGH subscale Unchanged 
16 CN at baseline, 3 converted 

into MCI 

n = 36 n = 27 
11 MCI at baseline, 2 converted 

into D 

P = 1.0 
Increased  

n = 9 

2 CN at baseline, 1 converted 

into D 

 2 (1.5–3)
a
 

7 MCI at baseline, 2 converted 

into D 

CN, cognitively normal; MCI, mild cognitive impairment; D, dementia; WMHs, White 

matter hyperintensities; BG, basal ganglia; 
a
Median (interquartilic range) of the increase 

in the scores; P is the value obtained in the analysis to study whether the increments in 

the radiological scales predict a change in the cognitive diagnostic category. P-values 

are corrected for multiple comparisons. 

 

 



 
 

 

Figure 1. Flowchart of the follow-up of patients with Parkinson’s disease from 

baseline. DBS, deep brain stimulation; PD-D, Parkinson’s disease with dementia. 

 

 

 

 

 

 


