18 research outputs found

    Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping

    Get PDF
    [EN] We report a new family of titanium-organic frameworks that enlarges the limited number of crystalline, porous materials available for this metal. They are chemically robust and can be prepared as single crystals at multi-gram scale from multiple precursors. Their heterometallic structure enables engineering of their photoactivity by metal doping rather than by linker functionalization. Compared to other methodologies based on the post-synthetic metallation of MOFs, our approach is well-fitted for controlling the positioning of dopants at an atomic level to gain more precise control over the band-gap and electronic properties of the porous solid. Changes in the band-gap are also rationalized with computational modelling and experimentally confirmed by photocatalytic H-2 production.This work was supported by the EU (ERC Stg Chem-fs-MOF 714122) and Spanish MINECO (MDM-2015-0538, MAT2016-75586-C4-4-P & CTQ2017-83486-P). C.M.-G. and J.C.-G. thank the Spanish MINECO for a Ramon y Cajal Fellowship and FPI Scholarship (CTQ2014-59209-P), respectively. N.M.P. thanks the Junta de Andalucia for post-doctoral fellowship (P10-FQM-6050). BSC-RES and UG-Alhambra are acknowledged for the computational resources and F. Lloret for helpful discussions.Castells-Gil, J.; Padial, NM.; Almora-Barrios, N.; Albero-Sancho, J.; Ruiz-Salvador, AR.; Gonzalez-Platas, J.; GarcĂ­a GĂłmez, H.... (2018). Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping. Angewandte Chemie International Edition. 57(28):8453-8457. https://doi.org/10.1002/anie.201802089S845384575728Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444-1230444. doi:10.1126/science.1230444Adil, K., Belmabkhout, Y., Pillai, R. S., Cadiau, A., Bhatt, P. M., Assen, A. H., 
 Eddaoudi, M. (2017). Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chemical Society Reviews, 46(11), 3402-3430. doi:10.1039/c7cs00153cHowarth, A. J., Liu, Y., Li, P., Li, Z., Wang, T. C., Hupp, J. T., & Farha, O. K. (2016). Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2015.18Colombo, V., Galli, S., Choi, H. J., Han, G. D., Maspero, A., Palmisano, G., 
 Long, J. R. (2011). High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chemical Science, 2(7), 1311. doi:10.1039/c1sc00136aPark, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., 
 Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. doi:10.1073/pnas.0602439103Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953Devic, T., & Serre, C. (2014). High valence 3p and transition metal based MOFs. Chem. Soc. Rev., 43(16), 6097-6115. doi:10.1039/c4cs00081aBai, Y., Dou, Y., Xie, L.-H., Rutledge, W., Li, J.-R., & Zhou, H.-C. (2016). Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 45(8), 2327-2367. doi:10.1039/c5cs00837aAssi, H., Mouchaham, G., Steunou, N., Devic, T., & Serre, C. (2017). Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks. Chemical Society Reviews, 46(11), 3431-3452. doi:10.1039/c7cs00001dDan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., & Férey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857-10859. doi:10.1021/ja903726mGao, J., Miao, J., Li, P.-Z., Teng, W. Y., Yang, L., Zhao, Y., 
 Zhang, Q. (2014). A p-type Ti(iv)-based metal–organic framework with visible-light photo-response. Chem. Commun., 50(29), 3786-3788. doi:10.1039/c3cc49440cBueken, B., Vermoortele, F., Vanpoucke, D. E. P., Reinsch, H., Tsou, C.-C., Valvekens, P., 
 De Vos, D. (2015). A Flexible Photoactive Titanium Metal-Organic Framework Based on a [TiIV3(ÎŒ3-O)(O)2(COO)6] Cluster. Angewandte Chemie International Edition, 54(47), 13912-13917. doi:10.1002/anie.201505512Bueken, B., Vermoortele, F., Vanpoucke, D. E. P., Reinsch, H., Tsou, C.-C., Valvekens, P., 
 De Vos, D. (2015). A Flexible Photoactive Titanium Metal-Organic Framework Based on a [TiIV3(ÎŒ3-O)(O)2(COO)6] Cluster. Angewandte Chemie, 127(47), 14118-14123. doi:10.1002/ange.201505512Yuan, S., Liu, T.-F., Feng, D., Tian, J., Wang, K., Qin, J., 
 Zhou, H.-C. (2015). A single crystalline porphyrinic titanium metal–organic framework. Chemical Science, 6(7), 3926-3930. doi:10.1039/c5sc00916bYuan, S., Qin, J.-S., Xu, H.-Q., Su, J., Rossi, D., Chen, Y., 
 Zhou, H.-C. (2017). [Ti8Zr2O12(COO)16] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Central Science, 4(1), 105-111. doi:10.1021/acscentsci.7b00497Dhakshinamoorthy, A., Asiri, A. M., & GarcĂ­a, H. (2016). Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metall-organische GerĂŒstverbindungen: Photokatalysatoren fĂŒr Redoxreaktion und die Produktion von Solarbrennstoffen. Angewandte Chemie, 128(18), 5504-5535. doi:10.1002/ange.201505581Deng, X., Li, Z., & GarcĂ­a, H. (2017). Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs). Chemistry - A European Journal, 23(47), 11189-11209. doi:10.1002/chem.201701460Horiuchi, Y., Toyao, T., Saito, M., Mochizuki, K., Iwata, M., Higashimura, H., 
 Matsuoka, M. (2012). Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal–Organic Framework. The Journal of Physical Chemistry C, 116(39), 20848-20853. doi:10.1021/jp3046005Hendon, C. H., Tiana, D., Fontecave, M., Sanchez, C., D’arras, L., Sassoye, C., 
 Walsh, A. (2013). Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization. Journal of the American Chemical Society, 135(30), 10942-10945. doi:10.1021/ja405350uChambers, M. B., Wang, X., Ellezam, L., Ersen, O., Fontecave, M., Sanchez, C., 
 Mellot-Draznieks, C. (2017). Maximizing the Photocatalytic Activity of Metal–Organic Frameworks with Aminated-Functionalized Linkers: Substoichiometric Effects in MIL-125-NH2. Journal of the American Chemical Society, 139(24), 8222-8228. doi:10.1021/jacs.7b02186Blatov, V. A., Shevchenko, A. P., & Proserpio, D. M. (2014). Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Crystal Growth & Design, 14(7), 3576-3586. doi:10.1021/cg500498kDelgado-Friedrichs, O., & O’Keeffe, M. (2003). Identification of and symmetry computation for crystal nets. Acta Crystallographica Section A Foundations of Crystallography, 59(4), 351-360. doi:10.1107/s0108767303012017Dincă, M., Han, W. S., Liu, Y., Dailly, A., Brown, C. M., & Long, J. R. (2007). Observation of Cu2+–H2 Interactions in a Fully Desolvated Sodalite-Type Metal–Organic Framework. Angewandte Chemie International Edition, 46(9), 1419-1422. doi:10.1002/anie.200604362Dincă, M., Han, W. S., Liu, Y., Dailly, A., Brown, C. M., & Long, J. R. (2007). Observation of Cu2+–H2 Interactions in a Fully Desolvated Sodalite-Type Metal–Organic Framework. Angewandte Chemie, 119(9), 1441-1444. doi:10.1002/ange.200604362Liu, T.-F., Vermeulen, N. A., Howarth, A. J., Li, P., Sarjeant, A. A., Hupp, J. T., & Farha, O. K. (2016). Adding to the Arsenal of Zirconium-Based Metal-Organic Frameworks: the Topology as a Platform for Solvent-Assisted Metal Incorporation. European Journal of Inorganic Chemistry, 2016(27), 4349-4352. doi:10.1002/ejic.201600627Wang, B., Lv, X.-L., Feng, D., Xie, L.-H., Zhang, J., Li, M., 
 Zhou, H.-C. (2016). Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. Journal of the American Chemical Society, 138(19), 6204-6216. doi:10.1021/jacs.6b01663Tan, Y.-X., He, Y.-P., & Zhang, J. (2011). Pore partition effect on gas sorption properties of an anionic metal–organic framework with exposed Cu2+ coordination sites. Chemical Communications, 47(38), 10647. doi:10.1039/c1cc14118jZou, L., Feng, D., Liu, T.-F., Chen, Y.-P., Yuan, S., Wang, K., 
 Zhou, H.-C. (2016). A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chem. Sci., 7(2), 1063-1069. doi:10.1039/c5sc03620hSantaclara, J. G., Kapteijn, F., Gascon, J., & van der Veen, M. A. (2017). Understanding metal–organic frameworks for photocatalytic solar fuel production. CrystEngComm, 19(29), 4118-4125. doi:10.1039/c7ce00006eCremades, E., EcheverrĂ­a, J., & Alvarez, S. (2010). The Trigonal Prism in Coordination Chemistry. Chemistry - A European Journal, 16(34), 10380-10396. doi:10.1002/chem.200903032Brozek, C. K., & Dincă, M. (2013). Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-Substituted MOF-5 and Redox Reactivity in Cr- and Fe-MOF-5. Journal of the American Chemical Society, 135(34), 12886-12891. doi:10.1021/ja406447

    2D Cu(I)‑I Coordination Polymer with Smart Optoelectronic Properties and Photocatalytic Activity as a Versatile Multifunctional Material

    Full text link
    This work presents two isostructural Cu(I)-I 2-fluoropyrazine (Fpyz) luminescent and semiconducting 2D coordination polymers (CPs). Hydrothermal synthesis allows the growth of P-1 space group single crystals, whereas solvent-free synthesis produces polycrystals. Via recrystallization in acetonitrile, P21 space group single crystals are obtained. Both show a reversible luminescent response to temperature and pressure. Structure determination by single-crystal X-ray diffraction at 200 and 100 K allows us to understand their response as a function of temperature. Applying hydrostatic/uniaxial pressure or grinding also generates significant variations in their emission. The high structural flexibility of the Cu(I)-I chain is significantly linked to the corresponding alterations in structure. Remarkably, pressure can increase the conductivity by up to 3 orders of magnitude. Variations in resistivity are consistent with changes in the band gap energy. The experimental results are in agreement with the DFT calculations. These properties may allow the use of these CPs as optical pressure or temperature sensors. In addition, their behavior as a heterogeneous photocatalyst of persistent organic dyes has also been investigatedThanks to Micro and Nanotechnology Institute CNM-CSIC for SEM images. Thanks to the SCXRD laboratory of the Interdepartmental Research Service and to Servicios Generales de Apoyo a la InvestigaciĂłn (SEGAI) at La Laguna University. This work has been supported by MCINN/AEI/ 10.13039/ 5011000011033 under the National Program of Sciences and Technological Materials, PID2019-108028GB-C22, PID2019- 106383GB-C41/C44, and TED2021-131132B-C22. Thanks to Gobierno d e Canarias and EU-FEDER (grant: ProID2020010067). This study forms part of the Advanced Materials program and was supported by MCIN with funding from European Union Next Generation EU (PRTR-C17.I1) and by Generalitat Valenciana (grant MFA/2022/007 and PROMETEO CIPROM/2021/075-GREENMAT). A.L. (R.T.) and D.E. thank the Generalitat Valenciana for the Ph.D. (Postdoctoral) Fellowship No. GRISOLIAP/2019/025 (CIAPOS/2021/20). J.C.G. and R. W. acknowledge the support from the Spanish Ministry of Science and Innovation (RTI2018-097508-B-I00, PID2021-128313OB-I00, TED2021- 131018B-C22) and the Regional Government of Madrid through projects NMAT2D-CM (S2018/NMT-4511). J.C.G. acknowledges support from the Regional Government of Madrid through “Proyectos SinĂ©rgicos de I + D” (grant Y2018/NMT-5028 FULMATEN-CM) and NANOCOV-CM (REACT-UE). IMDEA Nanociencia acknowledges support from the Severo Ochoa Programme for Centres of Excellence in R&D (MINECO, grant CEX2020-001039-S

    Structural behaviour of copper(I) iodine compounds under high pressure

    No full text
    International audienc

    Ab initio crystal structure determination of two chain functionalized pyrroles from synchrotron X-ray powder diffraction data

    No full text
    The crystal structure of two chain functionalized pyrroles, methyl 1-benzyl-5-(1-(4-chlorobenzoyloxy)-2-methoxy-2-oxoethyl)-4-(4-chlorophenyl)-1H-pyrrole-2-carboxylate and methyl 1-benzy1-4-(biphenyl-4-yl)-5-(1-(4-biphenylcarbonyloxy)-2-methoxy-2-oxoethyl)-1H-pyrrole-2-carboxylate, which are both important active candidates as antitumoral agents, have been obtained ab initio from synchrotron X-ray powder diffraction data. Both compounds crystallize in the monoclinic system (space group P2(1)/c), with a = 20.2544(3) angstrom, b = 6.80442(9) angstrom, c = 21.1981(3) angstrom, beta = 111.6388(9)degrees and a = 29.7747(6) angstrom, b = 6.27495(14) angstrom, c= 18.8525(3) angstrom, beta = 107.053(2)degrees, respectively. These structures were determined using a direct space approach, by means of Monte Carlo technique, followed by Rietveld refinement.The financial support from the Spanish Ministerio de Ciencia e InnovaciĂłn (PI201060E013) is also acknowledged.Peer Reviewe

    Effect of linker distribution in the photocatalytic activity of multivariate mesoporous crystals

    Get PDF
    The use of Metal–Organic Frameworks as crystalline matrices for the synthesis of multiple component or multivariate solids by the combination of different linkers into a single material has emerged as a versatile route to tailor the properties of single-component phases or even access new functions. This approach is particularly relevant for Zr6-MOFs due to the synthetic flexibility of this inorganic node. However, the majority of materials are isolated as polycrystalline solids, which are not ideal to decipher the spatial arrangement of parent and exchanged linkers for the formation of homogeneous structures or heterogeneous domains across the solid. Here we use high-throughput methodologies to optimize the synthesis of single crystals of UiO-68 and UiO-68-TZDC, a photoactive analogue based on a tetrazine dicarboxylic derivative. The analysis of the single linker phases reveals the necessity of combining both linkers to produce multivariate frameworks that combine efficient light sensitization, chemical stability, and porosity, all relevant to photocatalysis. We use solvent-assisted linker exchange reactions to produce a family of UiO-68-TZDC% binary frameworks, which respect the integrity and morphology of the original crystals. Our results suggest that the concentration of TZDC in solution and the reaction time control the distribution of this linker in the sibling crystals for a uniform mixture or the formation of core–shell domains. We also demonstrate how the possibility of generating an asymmetric distribution of both linkers has a negligible effect on the electronic structure and optical band gap of the solids but controls their performance for drastic changes in the photocatalytic activity toward proton or methyl viologen reduction.Financial support for this work was provided by the Marie SkƂodowska-Curie Global Fellowships (749359-EnanSET, N.M.P) within the European Union research and innovation framework programme (2014-2020

    EosFit7-GUI

    No full text

    Structural and Luminescence Properties of Cu(I)X-Quinoxaline under High Pressure (X = Br, I)

    No full text
    A study of high-pressure single-crystal X-ray diffraction and luminescence experiments together with ab initio simulations based on the density functional theory has been performed for two isomorphous copper(I) halide compounds with the empirical formula [C8H6Cu2X2N2] (X = Br, I) up to 4.62(4) and 7.00(4) GPa for X-ray diffraction and 6.3(4) and 11.6(4) GPa for luminescence, respectively. An exhaustive study of compressibility has been completed by means of determination of the isothermal equations of state and structural changes with pressure at room temperature, giving bulk moduli of K0 = 14.4(5) GPa and Kâ€Č0 = 7.7(6) for the bromide compound and K0 = 13.0(2) GPa and Kâ€Č0 = 7.4(2) for the iodide compound. Both cases exhibited a phase transition of second order around 3.3 GPa that was also detected in luminescence experiments under the same high-pressure conditions, wherein redshifts of the emission bands with increasing pressure were observed due to shortening of the Cu–Cu distances. Additionally, ab initio studies were carried out which confirmed the results obtained experimentally, although unfortunately, the phase transition was not predicted

    Ethical leadership within health care : health care leader’s perceptions of the preservation of ethics in their professional role

    No full text
    Syftet med denna magisteravhandling Ă€r att nĂ„ en djupare förstĂ„else av vad ett etiskt ledarskap inom hĂ€lso- och sjukvĂ„rden innebĂ€r. StrĂ€van Ă€r att belysa hur vĂ„rdledare kan slĂ„ vakt om etiken som en del av sin yrkesroll och bana vĂ€g för ett etiskt ledarskap. Magisteravhandlingens frĂ„gestĂ€llningar Ă€r: 1. Vad innebĂ€r ett etiskt ledarskap inom hĂ€lso- och sjukvĂ„rden? 2. Hur kan ledaren inom hĂ€lso- och sjukvĂ„rden slĂ„ vakt om etiken och försvara den som en del av sin yrkesroll och vĂ€rdegrund? Centrala begrepp för avhandlingen Ă€r etik, ledarskap, mĂ€nniskan och hermeneutik. Magisteravhandlingen baserar sig pĂ„ den caring science-tradition som utvecklats vid enheten för vĂ„rdvetenskap pĂ„ Åbo Akademi i Vasa. NĂ€rmelsesĂ€ttet Ă€r kvalitativt och avhandlingen Ă€r hermeneutisk till sin natur. Materialet bestĂ„r av intervjuer med ledare inom hĂ€lso- och sjukvĂ„rden och intervjutexterna har tolkats genom en kvalitativ innehĂ„llsanalys, inspirerad av hermeneutisk lĂ€sning. Analysen av intervjutexterna resulterade i ett huvudtema med sex underteman. En central tanke för alla dessa Ă€r att etisk kompetens och etiskt kunnande hos ledaren Ă€r en förutsĂ€ttning för att man skall kunna upprĂ€tthĂ„lla en god etik i verksamheten. UpprĂ€tthĂ„llandet av etiken ses som ett kontinuerligt arbete som krĂ€ver tid och satsning, men medför mycket gott för sĂ„vĂ€l patienter som personal. Huvudtemat representeras av tanken att en Ă€kta medmĂ€nsklighet hos en nĂ€rvarande ledare synliggör etiken och lyfter upp medarbetarna och deras integritet. Ett etiskt helhetstĂ€nkande frĂ„n ledaren inbjuder till etisk reflektion och samtal kring etiken i arbetet. Denna öppenhet stĂ€rker sĂ„vĂ€l arbetsklimat som etiken i sig. Vikten av stöd och tilltro stiger fram som centrala för att de anstĂ€llda skall förmĂ„ tillĂ€mpa etiken i vardagen, vilket ses som avgörande för att ge etiken fotfĂ€ste och genomslagskraft
    corecore