5,521 research outputs found

    Magnon valley Hall effect in CrI3-based vdW heterostructures

    Full text link
    Magnonic excitations in the two-dimensional (2D) van der Waals (vdW) ferromagnet CrI3 are studied. We find that bulk magnons exhibit a non-trivial topological band structure without the need for Dzyaloshinskii-Moriya (DM) interaction. This is shown in vdW heterostructures, consisting of single-layer CrI3 on top of different 2D materials as MoTe2, HfS2 and WSe2. We find numerically that the proposed substrates modify substantially the out-of-plane magnetic anisotropy on each sublattice of the CrI3 subsystem. The induced staggered anisotropy, combined with a proper band inversion, leads to the opening of a topological gap of the magnon spectrum. Since the gap is opened non-symmetrically at the K+ and K- points of the Brillouin zone, an imbalance in the magnon population between these two valleys can be created under a driving force. This phenomenon is in close analogy to the so-called valley Hall effect (VHE), and thus termed as magnon valley Hall effect (MVHE). In linear response to a temperature gradient we quantify this effect by the evaluation of the temperature-dependence of the magnon thermal Hall effect. These findings open a different avenue by adding the valley degrees of freedom besides the spin, in the study of magnons

    Robustness and transferability of universal attacks on compressed models

    Get PDF
    Neural network compression methods like pruning and quantization are very effective at efficiently deploying Deep Neural Networks (DNNs) on edge devices. However, DNNs remain vulnerable to adversarial examples-inconspicuous inputs that are specifically designed to fool these models. In particular, Universal Adversarial Perturbations (UAPs), are a powerful class of adversarial attacks which create adversarial perturbations that can generalize across a large set of inputs. In this work, we analyze the effect of various compression techniques to UAP attacks, including different forms of pruning and quantization. We test the robustness of compressed models to white-box and transfer attacks, comparing them with their uncompressed counterparts on CIFAR-10 and SVHN datasets. Our evaluations reveal clear differences between pruning methods, including Soft Filter and Post-training Pruning. We observe that UAP transfer attacks between pruned and full models are limited, suggesting that the systemic vulnerabilities across these models are different. This finding has practical implications as using different compression techniques can blunt the effectiveness of black-box transfer attacks. We show that, in some scenarios, quantization can produce gradient-masking, giving a false sense of security. Finally, our results suggest that conclusions about the robustness of compressed models to UAP attacks is application dependent, observing different phenomena in the two datasets used in our experiments

    Patch Antenna Based on Metamaterials for a RFID Transponder

    Get PDF
    In this paper a self-diplexed antenna is proposed for a RFID transponder application. The development cycle is divided into two stages: antenna design and filters design. The antenna is based on a square microstrip patch filled with metamaterial structures. The inclusion of these structures allows simultaneous operation over several frequencies, which can be arbitrarily chosen. The antenna working frequencies are chosen to be 2.45 GHz (receiver) and 1.45 GHz (transmitter). In addition, the antenna is fed through two orthogonal coupled microstrip lines, what provides higher isolation between both ports. Some filters based on metamaterial particles are coupled or connected to the antenna feeding microstrip lines to avoid undesired interferences. This approach avoids using of an external filter or diplexer, providing larger size reduction and a compact self-diplexed antenna

    HA-grid: security aware hazard analysis for smart grids

    Get PDF
    Attacks targeting smart grid infrastructures can result in the disruptions of power supply as well as damages to costly equipment, with significant impact on safety as well as on end-consumers. It is therefore of essence to identify attack paths in the infrastructure that lead to safety violations and to determine critical components that must be protected. In this paper, we introduce a methodology (HA-Grid) that incorporates both safety and security modelling of smart grid infrastructure to analyse the impact of cyber threats on the safety of smart grid infrastructures. HA-Grid is applied on a smart grid test-bed to identify attack paths that lead to safety hazards, and to determine the common nodes in these attack paths as critical components that must be protected

    An X-ray study of the SNR G344.7-0.1 and the central object CXOU J170357.8-414302

    Get PDF
    Aims. We report results of an X-ray study of the supernova remnant (SNR) G344.7-0.1 and the point-like X-ray source located at the geometrical center of the SNR radio structure. Methods. The morphology and spectral properties of the remnant and the central X-ray point-like source were studied using data from the XMM-Newton and Chandra satellites. Archival radio data and infrared Spitzer observations at 8 and 24 μ\mum were used to compare and study its multi-band properties at different wavelengths. Results. The XMM-Newton and Chandra observations reveal that the overall X-ray emission of G344.7-0.1 is extended and correlates very well with regions of bright radio and infrared emission. The X-ray spectrum is dominated by prominent atomic emission lines. These characteristics suggest that the X-ray emission originated in a thin thermal plasma, whose radiation is represented well by a plane-parallel shock plasma model (PSHOCK). Our study favors the scenario in which G344.7-0.1 is a 6 x 10^3 year old SNR expanding in a medium with a high density gradient and is most likely encountering a molecular cloud on the western side. In addition, we report the discovery of a soft point-like X-ray source located at the geometrical center of the radio SNR structure. The object presents some characteristics of the so-called compact central objects (CCO). However, its neutral hydrogen absorption column (N_{H}) is inconsistent with that of the SNR. Coincident with the position of the source, we found infrared and optical objects with typical early-K star characteristics. The X-ray source may be a foreground star or the CCO associated with the SNR. If this latter possibility were confirmed, the point-like source would be the farthest CCO detected so far and the eighth member of the new population of isolated and weakly magnetized neutron stars.Comment: 9 pages, 8 figures, accepted for publication in Astronomy and Astrophysics. Higher resolution figures can be seen on A&

    New VR magnification ratios of QSO 0957+561

    Full text link
    We present VR magnification ratios of QSO 0957+561, which are inferred from the GLITP light curves of Q0957+561A and new frames taken with the 2.56m Nordic Optical Telescope about 14 months after the GLITP monitoring. From two photometric approaches and a reasonable range for the time delay in the system (415-430 days), we do not obtain achromatic optical continuum ratios, but ratios depending on the wavelength. These new measurements are consistent with differential extinction in the lens galaxy, the Lyman limit system, the damped Ly-alpha system, or the host galaxy of the QSO. The possible values for the differential extinction and the ratio of total to selective extinction in the V band are reasonable. Moreover, crude probability arguments suggest that the ray paths of the two components cross a similar dusty environment, including a network of compact dust clouds and compact dust voids. As an alternative (in fact, the usual interpretation of the old ratios), we also try to explain the new ratios as caused by gravitational microlensing in the deflector. From magnification maps for each of the gravitationally lensed images, using different fractions of the surface mass density represented by the microlenses, as well as different sizes and profiles of the V-band and R-band sources, several synthetic distributions of V-band and R-band ratios are derived. In some gravitational scenarios, there is an apparent disagreement between the observed pair of ratios and the simulated distributions. However, several microlensing pictures work well. To decide between either extinction, or microlensing, or a mixed scenario (extinction + microlensing), new observational and interpretation efforts are required.Comment: PS and PDF versions are created from the LaTeX file and 5 EPS figures, two additional figues (Figs. 6 and 7) in JPEG format, scheduled for the ApJ 20 January 2005 issu

    Zebrafish macroH2A variants have distinct embryo localization and function

    Get PDF
    Mouse and cell-based studies have shown that macroH2A histone variants predominantly associate with heterochromatin. Functional studies found that macroH2As are involved in gene repression, inhibiting the acquisition of pluripotency and preserving cell differentiation. However, only a few studies have analysed the role of macroH2A during early embryo development. We report the development of transgenic zebrafish lines expressing macroH2A isoforms (mH2A1 and mH2A2) fusion proteins (with GFP) under identified endogenous promoters. We found that mH2A1 and mH2A2 have different spatial and temporal expression patterns during embryonic development. mH2A1 is expressed mostly in the extraembryonic Yolk Syncytial Layer (YSL) starting before shield stage and decreasing once morphogenesis is completed. mH2A2 expression lags behind mH2A1, becoming evident at 24 hpf, within the whole body of the embryo proper. Our ChIP-seq analysis showed that mH2A1 and mH2A2 bind to different DNA regions, changing dramatically after gastrulation. We further analysed RNA-seq data and showed that there is not a general/unspecific repressing function of mH2A1 or mH2A2 associated with heterochromatin but a fine regulation depending on cell types and stage of development. mH2A1 downregulates DNA expression in specific cells and embryo stages and its effect is independent of heterochromatin formation but it is correlated with nucleus quiescence instead. Whereas mH2A2 DNA association correlates with upregulation of differentially expressed genes between 75% epiboly and 24 hpf stages. Our data provide information for underlying molecules that participate in crucial early developmental events, and open new venues to explore mH2A related mechanisms that involve cell proliferation, differentiation, migration and metabolism

    Astringency sub-qualities of red wines and the influence of wine–saliva aggregates

    Get PDF
    Astringency is a sensory attribute, related to the quality and mouthfeel of red wines. However, the origin of astringency sub-qualities, such as the typical drying astringency found in immature grapes, is still unknown. Astringency of red wines with similar tannin content but different astringency sub-qualities, from different harvest dates, is studied. Astringency was characterised in terms of friction coefficient, polyphenol content, sensory analysis and tannin/salivary–proteins aggregates characterisation. A different evolution during ripening was found for both Cabernet Sauvignon and Carménère, and tannin–protein aggregates showed differences in size, shape and surface. The velvety sub-quality appears to be related to aggregates with low precipitation, and with specific surface characteristics as roundness and Feret diameter. Results from this work propose an effect of aggregates on sensory perception and opens the possibility to explore their effect on oral lubrication

    THE HIGH CADENCE TRANSIENT SURVEY (HITS). I. SURVEY DESIGN AND SUPERNOVA SHOCK BREAKOUT CONSTRAINTS

    Get PDF
    Indexación: Web of Science; Scopus.We present the first results of the High Cadence Transient Survey (HiTS), a survey for which the objective is to detect and follow-up optical transients with characteristic timescales from hours to days, especially the earliest hours of supernova (SN) explosions. HiTS uses the Dark Energy Camera and a custom pipeline for image subtraction, candidate filtering and candidate visualization, which runs in real-time to be able to react rapidly to the new transients. We discuss the survey design, the technical challenges associated with the real-time analysis of these large volumes of data and our first results. In our 2013, 2014, and 2015 campaigns, we detected more than 120 young SN candidates, but we did not find a clear signature from the short-lived SN shock breakouts (SBOs) originating after the core collapse of red supergiant stars, which was the initial science aim of this survey. Using the empirical distribution of limiting magnitudes from our observational campaigns, we measured the expected recovery fraction of randomly injected SN light curves, which included SBO optical peaks produced with models from Tominaga et al. (2011) and Nakar & Sari (2010). From this analysis, we cannot rule out the models from Tominaga et al. (2011) under any reasonable distributions of progenitor masses, but we can marginally rule out the brighter and longer-lived SBO models from Nakar & Sari (2010) under our best-guess distribution of progenitor masses. Finally, we highlight the implications of this work for future massive data sets produced by astronomical observatories, such as LSST.http://iopscience.iop.org/article/10.3847/0004-637X/832/2/155/meta;jsessionid=76BDFFFE378003616F6DBA56A9225673.c4.iopscience.cld.iop.or
    corecore