21,940 research outputs found

    Gamma Ray Bursts: Cosmic Rulers for the High-Redshift Universe?

    Get PDF
    The desire to extend the Hubble Diagram to higher redshifts than the range of current Type Ia Supernovae observations has prompted investigation into spectral correlations in Gamma Ray Bursts, in the hope that standard candle-like properties can be identified. In this paper we discuss the potential of these new `cosmic rulers' and highlight their limitations by investigating the constraints that current data can place on an alternative Cosmological model in the form of Conformal Gravity. By fitting current Type 1a Supernovae and Gamma Ray Burst (GRB) data to the predicted luminosity distance redshift relation of both the standard Concordance Model and Conformal Gravity, we show that currently \emph{neither} model is strongly favoured at high redshift. The scatter in the current GRB data testifies to the further work required if GRBs are to cement their place as effective probes of the cosmological distance scale.Comment: 2 pages, 1 figure (black & white, colour available). To be published in "Phil. Trans. of the Royal Society" as proceedings from Discussion Meeting on Gamma Ray Burst

    The silicate absorption profile in the ISM towards the heavily obscured nucleus of NGC 4418

    Get PDF
    The 9.7-micron silicate absorption profile in the interstellar medium provides important information on the physical and chemical composition of interstellar dust grains. Measurements in the Milky Way have shown that the profile in the diffuse interstellar medium is very similar to the amorphous silicate profiles found in circumstellar dust shells around late M stars, and narrower than the silicate profile in denser star-forming regions. Here, we investigate the silicate absorption profile towards the very heavily obscured nucleus of NGC 4418, the galaxy with the deepest known silicate absorption feature, and compare it to the profiles seen in the Milky Way. Comparison between the 8-13 micron spectrum obtained with TReCS on Gemini and the larger aperture spectrum obtained from the Spitzer archive indicates that the former isolates the nuclear emission, while Spitzer detects low surface brightness circumnuclear diffuse emission in addition. The silicate absorption profile towards the nucleus is very similar to that in the diffuse ISM in the Milky Way with no evidence of spectral structure from crystalline silicates or silicon carbide grains.Comment: 7 Pages, 3 figures. MNRAS in pres

    Nanowires: A route to efficient thermoelectric devices

    Full text link
    Miniaturization of electronic devices aims at manufacturing ever smaller products, from mesoscopic to nanoscopic sizes. This trend is challenging because the increased levels of dissipated power demands a better understanding of heat transport in small volumes. A significant amount of the consumed energy is transformed into heat and dissipated to the environment. Thermoelectric materials offer the possibility to harness dissipated energy and make devices less energy-demanding. Heat-to-electricity conversion requires materials with a strongly suppressed thermal conductivity but still high electronic conduction. Nanowires can meet nicely these two requirements because enhanced phonon scattering at the surface and defects reduces the lattice thermal conductivity while electric conductivity is not deteriorated, leading to an overall remarkable thermoelectric efficiency. Therefore, nanowires are regarded as a promising route to achieving valuable thermoelectric materials at the nanoscale. In this paper, we present an overview of key experimental and theoretical results concerning the thermoelectric properties of nanowires. The focus of this review is put on the physical mechanisms by which the efficiency of nanowires can be improved. Phonon scattering at surfaces and interfaces, enhancement of the power factor by quantum effects and topological protection of electron states to prevent the degradation of electrical conductivity in nanowires are thoroughly discussed

    Multiwavelength analysis of the young open cluster NGC 2362

    Full text link
    We present a multiwavelength analysis of the young open cluster NGC 2362. UBVRcIc CCD photometric observations, together with available data in the Chandra data base, near infrared data from the Two Micron All Sky Survey (2MASS), and recently published Halpha spectroscopy were used to get information about the evolutionary stage of the cluster and the main physical properties of its stellar content. Cluster membership is estimated for every individual star by means of ZAMS and isochrone fitting. The cluster is confirmed to host a richly populated pre-main sequence (PMS), and to contain a large amount of X-ray emitting stars, which reach from the PMS members of GK spectral type, up to the most luminous OB type main sequence (MS) members. The PMS cluster members show no significant age spread, and the comparison to both PMS and post-MS isochrones suggests a younger age for the more massive MS than for lower mass PMS members. The analysis allows to asses the validity of currently used pre-main sequence evolutionary models, and supports the suggestion of a well defined positive correlation of the X-ray emission from PMS stars with their bolometric luminosity. Clear differences are found on the other hand, between the X-ray activity properties of MS and PMS cluster members, both in the relation between X-ray luminosity and bolometric luminosity, and in spectral properties as well.Comment: 1 gzipped file: 1 tex file with 9 pages text. 5 ps files with figures. Submitted to Astrophysical Journa

    Entanglement of two qubits mediated by one-dimensional plasmonic waveguides

    Get PDF
    We investigate qubit-qubit entanglement mediated by plasmons supported by one-dimensional waveguides. We explore both the situation of spontaneous formation of entanglement from an unentangled state and the emergence of driven steady-state entanglement under continuous pumping. In both cases, we show that large values for the concurrence are attainable for qubit-qubit distances larger than the operating wavelength by using plasmonic waveguides that are currently available.Comment: 4 pages, 4 figures. Minor Changes. Journal Reference added. Highlighted in Physic

    VLT and GTC observations of SDSS J0123+00: a type 2 quasar triggered in a galaxy encounter?

    Get PDF
    We present long-slit spectroscopy, continuum and [OIII]5007 imaging data obtained with the Very Large Telescope and the Gran Telescopio Canarias of the type 2 quasar SDSS J0123+00 at z=0.399. The quasar lies in a complex, gas-rich environment. It appears to be physically connected by a tidal bridge to another galaxy at a projected distance of ~100 kpc, which suggests this is an interacting system. Ionized gas is detected to a distance of at least ~133 kpc from the nucleus. The nebula has a total extension of ~180 kpc. This is one of the largest ionized nebulae ever detected associated with an active galaxy. Based on the environmental properties, we propose that the origin of the nebula is tidal debris from a galactic encounter, which could as well be the triggering mechanism of the nuclear activity. SDSS J0123+00 demonstrates that giant, luminous ionized nebulae can exist associated with type 2 quasars of low radio luminosities, contrary to expectations based on type 1 quasar studies.Comment: 6 pages, 5 figures. Accepted for publication in MNRAS Letter

    Active galactic nuclei synapses: X-ray versus optical classifications using artificial neural networks

    Full text link
    (Abridged) Many classes of active galactic nuclei (AGN) have been defined entirely throughout optical wavelengths while the X-ray spectra have been very useful to investigate their inner regions. However, optical and X-ray results show many discrepancies that have not been fully understood yet. The aim of this paper is to study the "synapses" between the X-ray and optical classifications. For the first time, the new EFLUXER task allowed us to analyse broad band X-ray spectra of emission line nuclei (ELN) without any prior spectral fitting using artificial neural networks (ANNs). Our sample comprises 162 XMM-Newton/pn spectra of 90 local ELN in the Palomar sample. It includes starbursts (SB), transition objects (T2), LINERs (L1.8 and L2), and Seyferts (S1, S1.8, and S2). The ANNs are 90% efficient at classifying the trained classes S1, S1.8, and SB. The S1 and S1.8 classes show a wide range of S1- and S1.8-like components. We suggest that this is related to a large degree of obscuration at X-rays. The S1, S1.8, S2, L1.8, L2/T2/SB-AGN (SB with indications of AGN), and SB classes have similar average X-ray spectra within each class, but these average spectra can be distinguished from class to class. The S2 (L1.8) class is linked to the S1.8 (S1) class with larger SB-like component than the S1.8 (S1) class. The L2, T2, and SB-AGN classes conform a class in the X-rays similar to the S2 class albeit with larger fractions of SB-like component. This SB-like component is the contribution of the star-formation in the host galaxy, which is large when the AGN is weak. An AGN-like component seems to be present in the vast majority of the ELN, attending to the non-negligible fraction of S1-like or S1.8-like component. This trained ANN could be used to infer optical properties from X-ray spectra in surveys like eRosita.Comment: 15 pages, 7 figures, accepted for publication in A&A. Appendix B only in the full version of the paper here: https://dl.dropboxusercontent.com/u/3484086/AGNSynapsis_OGM_online.pd

    Quantum Renormalization Group for 1 Dimensional Fermion Systems

    Full text link
    Inspired by the superblock method of White, we introduce a simple modification of the standard Renormalization Group (RG) technique for the study of quantum lattice systems. Our method which takes into account the effect of Boundary Conditions(BC), may be regarded as a simple way for obtaining first estimates of many properties of quantum lattice systems. By applying this method to the 1-dimensional free and interacting fermion system, we obtain the ground state energy with much higher accuracy than the standard RG. We also calculate the density-density correlation function in the free-fermion case which shows good agreement with the exact result.Comment: LaTex file, 1 PS figur
    corecore