The 9.7-micron silicate absorption profile in the interstellar medium
provides important information on the physical and chemical composition of
interstellar dust grains. Measurements in the Milky Way have shown that the
profile in the diffuse interstellar medium is very similar to the amorphous
silicate profiles found in circumstellar dust shells around late M stars, and
narrower than the silicate profile in denser star-forming regions. Here, we
investigate the silicate absorption profile towards the very heavily obscured
nucleus of NGC 4418, the galaxy with the deepest known silicate absorption
feature, and compare it to the profiles seen in the Milky Way. Comparison
between the 8-13 micron spectrum obtained with TReCS on Gemini and the larger
aperture spectrum obtained from the Spitzer archive indicates that the former
isolates the nuclear emission, while Spitzer detects low surface brightness
circumnuclear diffuse emission in addition. The silicate absorption profile
towards the nucleus is very similar to that in the diffuse ISM in the Milky Way
with no evidence of spectral structure from crystalline silicates or silicon
carbide grains.Comment: 7 Pages, 3 figures. MNRAS in pres