22 research outputs found

    Freeze-out radii extracted from three-pion cumulants in pp, p-Pb and Pb-Pb collisions at the LHC

    No full text

    Coherent photoproduction of rho(0) vector mesons in ultra-peripheral Pb-Pb collisions at root s(NN)=5.02 TeV

    No full text

    Measurement of nuclear effects on psi(2S) production in p-Pb collisions at root s(NN)=8:16 TeV

    No full text

    Multiplicity dependence of charged-particle production in pp, p–Pb, Xe–Xe and Pb–Pb collisions at the LHC

    Get PDF
    Multiplicity (Nch) distributions and transverse momentum (pT) spectra of inclusive primary charged particles in the kinematic range of |η|<0.8 and 0.15 GeV/c<pT<10 GeV/c are reported for pp, p–Pb, Xe–Xe and Pb–Pb collisions at centre-of-mass energies per nucleon pair ranging from sNN=2.76 TeV up to 13 TeV. A sequential two-dimensional unfolding procedure is used to extract the correlation between the transverse momentum of primary charged particles and the charged-particle multiplicity of the corresponding collision. This correlation sharply characterises important features of the final state of a collision and, therefore, can be used as a stringent test of theoretical models. The multiplicity distributions as well as the mean and standard deviation derived from the pT spectra are compared to state-of-the-art model predictions. Providing these fundamental observables of bulk particle production consistently across a wide range of collision energies and system sizes can serve as an important input for tuning Monte Carlo event generators

    Measurement of the Lifetime and <math display="inline"><mi mathvariant="normal">Λ</mi></math> Separation Energy of <math display="inline"><mmultiscripts><mrow><mi mathvariant="normal">H</mi></mrow><mprescripts/><mrow><mi mathvariant="normal">Λ</mi></mrow><mn>3</mn></mmultiscripts></math>

    No full text
    International audienceThe most precise measurements to date of the HΛ3 lifetime τ and Λ separation energy BΛ are obtained using the data sample of Pb-Pb collisions at sNN=5.02  TeV collected by ALICE at the LHC. The HΛ3 is reconstructed via its charged two-body mesonic decay channel (HΛ3→He3+π- and the charge-conjugate process). The measured values τ=[253±11(stat)±6(syst)]  ps and BΛ=[102±63(stat)±67(syst)]  keV are compatible with predictions from effective field theories and confirm that the HΛ3 structure is consistent with a weakly bound system

    Inclusive J/psi production at midrapidity in pp collisions at root s=13 Tev

    No full text

    Constraining hadronization mechanisms with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">c</mml:mi></mml:mrow><mml:mrow><mml:mo linebreak="badbreak" linebreakstyle="after">+</mml:mo></mml:mrow></mml:msubsup><mml:mo stretchy="false">/</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="normal">D</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:math> production ratios in Pb–Pb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>5.02</mml:mn></mml:math> TeV

    Get PDF
    The production of prompt Λc+ baryons at midrapidity (|y|<0.5) was measured in central (0–10%) and mid-central (30–50%) Pb–Pb collisions at the center-of-mass energy per nucleon–nucleon pair sNN=5.02 TeV with the ALICE detector. The results are more precise, more differential in centrality, and reach much lower transverse momentum (pT=1 GeV/c) with respect to previous measurements performed by the ALICE, STAR, and CMS Collaborations in nucleus–nucleus collisions, allowing for an extrapolation down to pT=0. The pT-differential Λc+/D0 ratio is enhanced with respect to the pp measurement for 4<pT<8 GeV/c by 3.7 standard deviations (σ), while the pT-integrated ratios are compatible within 1σ. The observed trend is similar to that observed in the strange sector for the Λ/KS0 ratio. Model calculations including coalescence or statistical hadronization for charm-hadron formation are compared with the data

    Enhanced Deuteron Coalescence Probability in Jets

    No full text
    International audienceThe transverse-momentum (pT) spectra and coalescence parameters B2 of (anti)deuterons are measured in p-p collisions at s=13  TeV for the first time in and out of jets. In this measurement, the direction of the leading particle with the highest pT in the event (pTlead&gt;5  GeV/c) is used as an approximation for the jet axis. The event is consequently divided into three azimuthal regions, and the jet signal is obtained as the difference between the toward region, that contains jet fragmentation products in addition to the underlying event (UE), and the transverse region, which is dominated by the UE. The coalescence parameter in the jet is found to be approximately a factor of 10 larger than that in the underlying event. This experimental observation is consistent with the coalescence picture and can be attributed to the smaller average phase-space distance between nucleons in the jet cone as compared with the underlying event. The results presented in this Letter are compared to predictions from a simple nucleon coalescence model, where the phase-space distributions of nucleons are generated using pythia8 with the Monash 2013 tuning, and to predictions from a deuteron production model based on ordinary nuclear reactions with parametrized energy-dependent cross sections tuned on data. The latter model is implemented in pythia8.3. Both models reproduce the observed large difference between in-jet and out-of-jet coalescence parameters, although the almost flat trend of the B2Jet is not reproduced by the models, which instead give a decreasing trend

    Jet-associated deuteron production in pp collisions at s=13 TeV

    No full text
    Deuteron production in high-energy collisions is sensitive to the space–time evolution of the collision system, and is typically described by a coalescence mechanism. For the first time, we present results on jet-associated deuteron production in pp collisions at s=13 TeV, providing an opportunity to test the established picture for deuteron production in events with a hard scattering. Using a trigger particle with high transverse-momentum (pT>5 GeV/c) as a proxy for the presence of a jet at midrapidity, we observe a measurable population of deuterons being produced around the jet proxy. The associated deuteron yield measured in a narrow angular range around the trigger particle differs by 2.4–4.8 standard deviations from the uncorrelated background. The data are described by PYTHIA model calculations featuring baryon coalescence

    Measurement of anti-3He nuclei absorption in matter and impact on their propagation in the Galaxy

    Get PDF
    AbstractIn our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of 3He{}^{3}\overline{{{{\rm{He}}}}} 3 He ¯ when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as an input to the calculations of the transparency of our Galaxy to the propagation of 3He{}^{3}\overline{{{{\rm{He}}}}} 3 He ¯ stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing 3He{}^{3}\overline{{{{\rm{He}}}}} 3 He ¯ momentum from 25% to 90% for cosmic-ray sources. The results indicate that 3He{}^{3}\overline{{{{\rm{He}}}}} 3 He ¯ nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.</jats:p
    corecore