36 research outputs found

    Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection

    Get PDF
    International audienceTwo of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic inflammation via the modulation of adipose tissue-related pathway

    Semen CD4+ T cells and macrophages are productively infected at all stages of SIV infection in macaques.

    Get PDF
    International audienceThe mucosal events of HIV transmission have been extensively studied, but the role of infected cells present in the genital and rectal secretions, and in the semen, in particular, remains a matter of debate. As a prerequisite to a thorough in vivo investigation of the early transmission events through infected cells, we characterized in detail by multi-parameter flow cytometry the changes in macaque seminal leukocytes during SIVmac251 infection, focusing on T cells, macrophages and dendritic cells. Using immunocytofluorescence targeting SIV proteins and real-time quantitative PCR targeting SIV DNA, we investigated the nature of the infected cells on sorted semen leukocytes from macaques at different stages of infection. Finally, we cocultured semen CD4(+) T cells and macrophages with a cell line permissive to SIV infection to assess their infectivity in vitro. We found that primary infection induced strong local inflammation, which was associated with an increase in the number of leukocytes in semen, both factors having the potential to favor cell-associated virus transmission. Semen CD4(+) T cells and macrophages were productively infected at all stages of infection and were infectious in vitro. Lymphocytes had a mucosal phenotype and expressed activation (CD69 & HLA-DR) and migration (CCR5, CXCR4, LFA-1) markers. CD69 expression was increased in semen T cells by SIV infection, at all stages of infection. Macrophages predominated at all stages and expressed CD4, CCR5, MAC-1 and LFA-1. Altogether, we demonstrated that semen contains the two major SIV-target cells (CD4+ T cells and macrophages). Both cell types can be productively infected at all stages of SIV infection and are endowed with markers that may facilitate transmission of infection during sexual exposure

    Tissue Tropism and Target Cells of NSs-Deleted Rift Valley Fever Virus in Live Immunodeficient Mice

    Get PDF
    Rift Valley fever, caused by a member of the Bunyaviridae family, has spread during recent years to most sub-Saharan African countries, in Egypt and in the Arabian peninsula. The virus can be transmitted by insect vectors or by direct contacts with infectious tissues. The analysis of virus replication and dissemination in laboratory animals has been hampered by the need to euthanize sufficient numbers of animals and to assay appropriate organs at various time points after infection to evaluate the viral replication. By following the bioluminescence and fluorescence of Rift Valley fever viruses expressing light reporters, we were able to track the real-time dissemination of the viruses in live immunodeficient mice. We showed that the first infected organs were the thymus, spleen and liver, but the liver rapidly became the main location of viral replication. Phagocytes also appeared as important targets, and their systemic depletion by use of clodronate liposomes decreased the number of viruses in the blood, delayed the viral dissemination and prolonged the survival of the infected mice

    Les flux de carbone le long du continuum terre-océan européen par modÚles et observations

    No full text
    Since the industrial revolution, emissions of carbon dioxide (CO2) due to human activities have drastically increased carbon concentration in the atmosphere, perturbing the natural cycle of carbon (C). Oceans and the land biosphere have seen their C stocks increase. In order to better understand the dynamics of those sinks, it is essential to understand the link between them, the inland waters. In my thesis, I used three different methods to improve our understanding if the C dynamics in the European inland waters, with a focus on the fate of dissolved organic C (DOC) in the river network. First I applied a land surface model at the European scale to estimate and study the spatio-temporal variability of DOC leaching from land to rivers. I estimated that around 14 TgC per year are leached into the European river network, about 0.6% of the net primary production (NPP). I observed an important spatio-temporal variability with a maximum during winter and minimum in summer with the exception of nordic region where the maximum occurs in spring after the snow melt. Mes results showed that the fraction of NPP that is leached as DOC in the river primarly depends on the runoff and drainage while temperature only plays a secondary role. Secondly, I sampled the Meuse in order to study the biodegradability of DOC in the river. I estiamted a half-life time around 10 days, value inferior to the calculated water residence time in the Meuse, meaning that most of the DOC will be degraded before reaching the sea. Thirdly, based on literature, I built a C budget for European inland waters at the country scale in order to evaluate the import and export of C through border via rivers. I estimated that over Europe around 2.3 m-2 per year an-1 are imported and 4.4 gC m-2 per year exported leading to a net river C balance (RNCB) of 2.1 gC m-2 per year. With the exception of the Netherlands, Portugal, Estonia and Ukraine, all countries have a positive RNCB meani ng that the export more C than they import. I compared the RNCB against other components of the national C budget and against a other lateral flux of C between countries, the emissions related to wood and crop harvest trades. I showed that for some countries, the RNCB can be around the same order of magnitudes as harvest trades and thus should be included in national budget.Depuis la rĂ©volution industrielle, les Ă©missions de dioxyde de carbone (CO2) vers l’atmosphĂšre dues Ă  l’activitĂ© humaine ont fortement augmentĂ©es, perturbant le cycle naturel du carbone (C). Les ocĂ©ans et l’écosystĂšme terrestre ont vu leur stock en C augmenter. Afin de mieux comprendre la dynamique de ces puits, il est essentiel de s’intĂ©resser au lien antre le puits terrestre et les ocĂ©ans, c’est-Ă -dire les eaux continentales. Dans ma thĂšse, j’ai utilisĂ© trois mĂ©thodes diffĂ©rentes afin d’amĂ©liorer notre comprĂ©hension de la dynamique du C dans le rĂ©seau hydrographique EuropĂ©en et avec un focus sur le C organique dissous (COD). Tout d’abord, j’ai appliquĂ© un modĂšle du systĂšme terre Ă  l’échelle EuropĂ©enne pour estimer et Ă©tudier la variabilitĂ© spatio-temporelle du transfert du C des terres jusqu’aux riviĂšres. J’ai estimĂ© qu’en moyenne environ 14.3 TgC par an sont transfĂ©rĂ©s des terres vers le systĂšme hydrographique EuropĂ©en, ce qui reprĂ©sente envrion 0.6% de la productivitĂ© primaire nette (NPP). J’ai observĂ© Ă©galement une importante variabilitĂ© spatio-temporelle avec un maximum en hiver et un minimum en Ă©tĂ© sauf dans les rĂ©gions nordiques oĂč le maximum a lieu au printemps lors de la fonte des neiges. Mes rĂ©sultats montrent que la fraction de NPP transfĂ©rĂ©e en tant que COD vers les riviĂšres est principalement contrĂŽlĂ© par le ruissellement et le drainage. Ensuite, j’ai effectuĂ© des campagnes d’échantillonnage sur la Meuse afin d’étudier la biodĂ©gradation du COD. J’ai estimĂ© un temps de demi-vie Ă  environ 10 jours, valeur infĂ©rieure au temps de rĂ©sidence de l’eau de la Meuse estimĂ© sur tout le bassin Ă  24 jours, ce qui signifie que la majoritĂ© du COD aura Ă©tĂ© dĂ©composĂ© avant d’atteindre l’estuaire. Et finalement, sur base de la littĂ©rature, j’ai construit un budget C pour les eaux continentales pour chaque pays EuropĂ©en pour Ă©value les imports et exports de C Ă  travers les frontiĂšres via les riviĂšres. J’ai estimĂ© que sur toute l’Europe en m oyenne environ 2.3 gC m-2 an-1 sont importĂ©s et 4.4 gC m-2 an-1 sont exportĂ©s entraĂźnant un bilan net de C dans les riviĂšres (RNCB) de 2.1 gC m-2 an-1. A l’exception des Pays-Bas, du Portugal, de l’Estonie et de l’Ukraine, tous les pays ont un RNCB positif, ils exportent plus de C qu’ils n’en importent. J’ai comparĂ© le RNCB avec d’autres composants du budget national de C et ainsi qu’avec un autre flux latĂ©ral de C d’un pays vers un autre, les Ă©missions liĂ©es aux Ă©changes de rĂ©coltes de bois et d’agriculture. J’ai montrĂ© que certains pays le RNCB est du mĂȘme ordre de grandeur que les Ă©changes de rĂ©coltes et devraient donc ĂȘtre inclus dans les budget nationaux de C

    Les flux de carbone le long du continuum terre-océan européen par modÚles et observations

    No full text
    Since the industrial revolution, emissions of carbon dioxide (CO2) due to human activities have drastically increased carbon concentration in the atmosphere, perturbing the natural cycle of carbon (C). Oceans and the land biosphere have seen their C stocks increase. In order to better understand the dynamics of those sinks, it is essential to understand the link between them, the inland waters. In my thesis, I used three different methods to improve our understanding if the C dynamics in the European inland waters, with a focus on the fate of dissolved organic C (DOC) in the river network. First I applied a land surface model at the European scale to estimate and study the spatio-temporal variability of DOC leaching from land to rivers. I estimated that around 14 TgC per year are leached into the European river network, about 0.6% of the net primary production (NPP). I observed an important spatio-temporal variability with a maximum during winter and minimum in summer with the exception of nordic region where the maximum occurs in spring after the snow melt. Mes results showed that the fraction of NPP that is leached as DOC in the river primarly depends on the runoff and drainage while temperature only plays a secondary role. Secondly, I sampled the Meuse in order to study the biodegradability of DOC in the river. I estiamted a half-life time around 10 days, value inferior to the calculated water residence time in the Meuse, meaning that most of the DOC will be degraded before reaching the sea. Thirdly, based on literature, I built a C budget for European inland waters at the country scale in order to evaluate the import and export of C through border via rivers. I estimated that over Europe around 2.3 m-2 per year an-1 are imported and 4.4 gC m-2 per year exported leading to a net river C balance (RNCB) of 2.1 gC m-2 per year. With the exception of the Netherlands, Portugal, Estonia and Ukraine, all countries have a positive RNCB meani ng that the export more C than they import. I compared the RNCB against other components of the national C budget and against a other lateral flux of C between countries, the emissions related to wood and crop harvest trades. I showed that for some countries, the RNCB can be around the same order of magnitudes as harvest trades and thus should be included in national budget.Depuis la rĂ©volution industrielle, les Ă©missions de dioxyde de carbone (CO2) vers l’atmosphĂšre dues Ă  l’activitĂ© humaine ont fortement augmentĂ©es, perturbant le cycle naturel du carbone (C). Les ocĂ©ans et l’écosystĂšme terrestre ont vu leur stock en C augmenter. Afin de mieux comprendre la dynamique de ces puits, il est essentiel de s’intĂ©resser au lien antre le puits terrestre et les ocĂ©ans, c’est-Ă -dire les eaux continentales. Dans ma thĂšse, j’ai utilisĂ© trois mĂ©thodes diffĂ©rentes afin d’amĂ©liorer notre comprĂ©hension de la dynamique du C dans le rĂ©seau hydrographique EuropĂ©en et avec un focus sur le C organique dissous (COD). Tout d’abord, j’ai appliquĂ© un modĂšle du systĂšme terre Ă  l’échelle EuropĂ©enne pour estimer et Ă©tudier la variabilitĂ© spatio-temporelle du transfert du C des terres jusqu’aux riviĂšres. J’ai estimĂ© qu’en moyenne environ 14.3 TgC par an sont transfĂ©rĂ©s des terres vers le systĂšme hydrographique EuropĂ©en, ce qui reprĂ©sente envrion 0.6% de la productivitĂ© primaire nette (NPP). J’ai observĂ© Ă©galement une importante variabilitĂ© spatio-temporelle avec un maximum en hiver et un minimum en Ă©tĂ© sauf dans les rĂ©gions nordiques oĂč le maximum a lieu au printemps lors de la fonte des neiges. Mes rĂ©sultats montrent que la fraction de NPP transfĂ©rĂ©e en tant que COD vers les riviĂšres est principalement contrĂŽlĂ© par le ruissellement et le drainage. Ensuite, j’ai effectuĂ© des campagnes d’échantillonnage sur la Meuse afin d’étudier la biodĂ©gradation du COD. J’ai estimĂ© un temps de demi-vie Ă  environ 10 jours, valeur infĂ©rieure au temps de rĂ©sidence de l’eau de la Meuse estimĂ© sur tout le bassin Ă  24 jours, ce qui signifie que la majoritĂ© du COD aura Ă©tĂ© dĂ©composĂ© avant d’atteindre l’estuaire. Et finalement, sur base de la littĂ©rature, j’ai construit un budget C pour les eaux continentales pour chaque pays EuropĂ©en pour Ă©value les imports et exports de C Ă  travers les frontiĂšres via les riviĂšres. J’ai estimĂ© que sur toute l’Europe en m oyenne environ 2.3 gC m-2 an-1 sont importĂ©s et 4.4 gC m-2 an-1 sont exportĂ©s entraĂźnant un bilan net de C dans les riviĂšres (RNCB) de 2.1 gC m-2 an-1. A l’exception des Pays-Bas, du Portugal, de l’Estonie et de l’Ukraine, tous les pays ont un RNCB positif, ils exportent plus de C qu’ils n’en importent. J’ai comparĂ© le RNCB avec d’autres composants du budget national de C et ainsi qu’avec un autre flux latĂ©ral de C d’un pays vers un autre, les Ă©missions liĂ©es aux Ă©changes de rĂ©coltes de bois et d’agriculture. J’ai montrĂ© que certains pays le RNCB est du mĂȘme ordre de grandeur que les Ă©changes de rĂ©coltes et devraient donc ĂȘtre inclus dans les budget nationaux de C

    Carbon fluxes along the European land-to-ocean continuum estimated by models and observations

    No full text
    Depuis la rĂ©volution industrielle, les Ă©missions de dioxyde de carbone (CO2) dues Ă  l’activitĂ© humaine ont fortement augmentĂ© la concentration de carbone dans l’atmosphĂšre, perturbant le cycle naturel du carbone (C). Cette augmentation a un effet direct sur le climat de la Terre et a de nombreuses consĂ©quences telles que l’augmentation de la tempĂ©rature, la modification des courants ocĂ©aniques et l’augmentation du niveau des mers. Pour rĂ©pondre Ă  cette perturbation anthropogĂ©nique, les ocĂ©ans et la biosphĂšre terrestre ont vu leurs stocks de C augmenter, agissant ainsi en tant qu’important attĂ©nuateur du changement climatique. La quantification et la comprĂ©hension de la variabilitĂ© spatiale et temporelle de ces puits ocĂ©anique et terrestre sont donc essentielles. Une partie du C fixĂ©e par la photosynthĂšse n’est en rĂ©alitĂ© pas stockĂ©e in-situ mais est Ă  la place transfĂ©rĂ©e vers les eaux continentales. Cette perte de C terrestre se passe Ă  travers le lessivage du C organique dissous (COD) et du C inorganique dissous (CID) ainsi que par Ă©rosion du C organique particulaire (COP). Lors de son passage dans ces eaux, le C peut ĂȘtre minĂ©ralisĂ© et rĂ©Ă©mis vers l’atmosphĂšre sous forme de CO2 et de mĂ©thane (CH4) ou enterrĂ© dans les sĂ©diments, le reste Ă©tant amenĂ© jusqu’aux ocĂ©ans. Cependant la quantification et la variabilitĂ© spatio-temporelle de ces processus ne sont pas encore tout Ă  fait comprises. Dans ma thĂšse, j’ai utilisĂ© trois mĂ©thodes diffĂ©rentes afin d’amĂ©liorer notre comprĂ©hension de la dynamique du C dans le rĂ©seau hydrographique EuropĂ©en, en me concentrant sur le destin du COD dans le systĂšme hydrographique.Tout d’abord, j’ai Ă©valuĂ© et appliquĂ© ORCHILEAK, un modĂšle du systĂšme terre, Ă  l’échelle EuropĂ©enne pour estimer et Ă©tudier la variabilitĂ© spatio-temporelle du transfert du COD des terres jusqu’aux riviĂšres. A ma connaissance, ceci est la premiĂšre estimation paneuropĂ©enne des flux de DOC Ă  travers l’interface terre-eaux continentales. La performance du modĂšle est d’abord Ă©valuĂ©e avec des observations de transfert de COD des terres jusqu’aux riviĂšres, des observations de flux des COD et de rĂ©activitĂ© du COD dans les riviĂšres, permettant de prouver que les transferts de COD simulĂ©s sont rĂ©alistes. J’ai estimĂ© qu’en moyenne environ 14.3 TgC sont transfĂ©rĂ©s chaque annĂ©e des terres vers le systĂšme hydrographique europĂ©en, ce qui reprĂ©sente environ 0.6% de la productivitĂ© primaire terrestre nette (NPP). J’ai observĂ© Ă©galement une importante variabilitĂ© spatio-temporelle avec un maximum en hiver et un minimum en Ă©tĂ© sauf dans les rĂ©gions nordiques oĂč le maximum a lieu au printemps lors de la fonte des neiges. J’ai Ă©tudiĂ© le lien entre la quantitĂ© de COD transfĂ©rĂ© des terres vers les riviĂšres et diffĂ©rentes variables environnementales et mes rĂ©sultats montrent que la fraction de NPP qui est transfĂ©rĂ©e en tant que COD dans les riviĂšres est principalement contrĂŽlĂ©e par le ruissellement et le ratio de ruissellement de surface par rapport au drainage alors que la tempĂ©rature ne joue seulement qu’un rĂŽle secondaire.Ensuite, j’ai effectuĂ© des campagnes d’échantillonnage sur la Meuse en France et en Belgique afin d’étudier la biodĂ©gradation du COD dans un bassin tempĂ©rĂ©. Pour cela, j’ai rĂ©alisĂ© des expĂ©riences Ă  l’échelle mensuelle en laboratoire et Ă©tudiĂ© comment la constante de vitesse de dĂ©gradation du COD (k) varie Ă  travers les saisons, en fonction de l’occupation du sol du bassin ainsi que sa dĂ©pendance vis-Ă -vis de la qualitĂ© de la matiĂšre organique (MO). La qualitĂ© de l’MO est mesurĂ©e Ă  l’aide du SUVA, l’absorbance ultraviolette spĂ©cifique Ă  254 nm, qui mesure l’aromaticitĂ© de l’MO. La biodĂ©gradation du COD est reprĂ©sentĂ©e une cinĂ©tique d’ordre 1 (FO), une cinĂ©tique d’ordre 1 avec une partie du COD considĂ©rĂ©e comme non-dĂ©gradable (FOR) et le modĂšle « reactive continuum » (RC). J’ai dĂ©montrĂ© que la mĂ©thode FO ne permet pas de bien reprĂ©senter l’évolution de la concentration de carbone dans le temps Ă  l’échelle mensuelle. Au contraire, la mĂ©thode FOR capture bien la cinĂ©tique de dĂ©gradation et, j’ai estimĂ© un temps de demi-vie pour le COD Ă  environ 10 jours, valeur infĂ©rieure au temps de rĂ©sidence de l’eau de la Meuse estimĂ© sur tout le bassin Ă  24 jours, ce qui signifie que la majoritĂ© du COD aura Ă©tĂ© dĂ©composĂ©e avant d’atteindre la mer. Cependant, la variabilitĂ© observĂ©e du k ne peut ĂȘtre expliquĂ©e par les variables Ă©tudiĂ©es (saisons, occupation du sol et le SUVA). La mĂ©thode RC permet tout autant de bien capturer la cinĂ©tique, et j’ai calculĂ© un k initial qui vaut environ 0.02 jour-1 mais avec une importante variabilitĂ©. Cette variabilitĂ© dans k n’a pas pu ĂȘtre reliĂ©e avec les saisons ou l’occupation des sols mais une corrĂ©lation significative (RÂČ=0.5) a pu ĂȘtre trouvĂ©e entre le k du modĂšle RC et le SUVA, suggĂ©rant que cet index, facile et rapide Ă  mesurer, pourrait ĂȘtre utilisĂ© comme proxy pour la dĂ©gradation du COD.Finalement, sur base de la littĂ©rature, j’ai construit un budget C pour les eaux continentales europĂ©ennes et Ă©tudiĂ© comment les flux transnationaux de C Ă  travers les riviĂšres peuvent impacter les budgets et inventaires nationaux de C. Une mĂ©thodologie a Ă©tĂ© dĂ©veloppĂ©e pour la quantification des transferts latĂ©raux de C Ă  travers les frontiĂšres et j’ai estimĂ© que sur toute l’Europe en moyenne environ 2.3 gC m-2 an-1 sont importĂ©s d’un pays vers un autre et 4.4 gC m-2 an-1 sont exportĂ©s d’un pays vers un autre ou vers la mer, entraĂźnant pour l’Europe, un budget net de C dans les riviĂšres (RNCB) de 2.1 gC m-2 an-1. A l’exception des Pays-Bas, du Portugal, de l’Estonie et de l’Ukraine, tous les pays ont un RNCB positif, ils exportent plus de C qu’ils n’en n’importent dĂ» aux apports de C des terres vers les riviĂšres au sein du pays lui-mĂȘme. J’ai comparĂ© le RNCB avec d’autres composants du budget national de C et plus particuliĂšrement aux flux latĂ©raux de C attribuĂ©s aux Ă©changes de rĂ©coltes de bois et d’agriculture entre pays. J’ai montrĂ© que la moitiĂ© des pays europĂ©ens ont un RNCB qui vaut plus de 10% que les Ă©changes de rĂ©coltes et un quart plus de 30% montrant que le RNCB devrait ĂȘtre intĂ©grĂ© dans les budgets nationaux de C. Dans le futur, notre mĂ©thodologie pourrait ĂȘtre appliquĂ©e Ă  d’autres rĂ©gions du globe et uniquement sur la partie anthropogĂ©nique du RNCB.Since the industrial revolution, emissions of carbon dioxide (CO2) due to human activities have drastically increased carbon concentration in the atmosphere, perturbing the natural cycle of carbon (C). This increase directly impacts Earth climate and has numerous consequences such as increase of air temperature, modification of the oceanic circulation and sea-level rise. As a response to this anthropogenic perturbation, oceans and the land biosphere have seen their C stocks increase, thereby acting as important mitigators of climate change. The quantification and the understanding of the spatio-temporal variability of those ocean and terrestrial C sinks are thus essential. Part of the terrestrial C fixed by photosynthesis is however not stored in-situ but is instead transferred to the inland waters. This terrestrial C loss occurs through leaching of dissolved organic C (DOC) and dissolved inorganic C (DIC) and through erosion of particulate organic C (POC). During transit, C can be mineralized and re-emitted back to the atmosphere in the form of CO2 and methane (CH4) or buried in the sediments, the leftovers being exported to the ocean. However, the quantification and spatio-temporal variability of these processes are not yet fully understood and remain poorly constrained. In my thesis, I used three different methods to improve our understanding if the C dynamics in the European inland waters, with a focus on the fate of DOC in the river network.Firstly, I evaluated and applied the land surface model ORCHILEAK at the European scale with the aim to investigate the present-day spatio-temporal variability of DOC leaching from land to river. To my knowledge, this is the first pan-European assessment of DOC fluxes through the land-inland water interface. The model performance is evaluated against the observations of DOC leaching, of DOC fluxes and DOC reactivity in rivers, providing evidence that our simulated DOC leaching fluxes are realistic. I estimated that around 14.3 TgC is leached each year from land to the European river network, a flux representing about 0.6% of the terrestrial net primary production (NPP). I also observed a large spatio-temporal variability in this leaching flux, with a maximum in winter and a minimum in summer with the exception of Nordic regions where the maximum occurs in spring after the snow melt. I investigated the relationship between DOC leaching and different environmental drivers and my results showed that the fraction of NPP leached as DOC is mainly controlled by the surface runoff and by the ratio of surface runoff to drainage temperature only playing a secondary role.Secondly, I’ve sampled the Meuse river catchment in France and Belgium in order to study the biodegradation of DOC in a temperate river basin. To achieve this goal, I carried out monthly scale experiments in laboratory and investigated how the decay rate constant (k) of the DOC degradation varies across seasons, land cover types and quality of the organic matter (OM). The OM quality was assessed using the specific ultraviolet absorbance at 254nm (SUVA index), which is a measure of the degree of its aromaticity. The DOC biodegradation was modeled using a first order kinetic (FO), a first order kinetic with a non-degradable pool (FOR) and a reactive continuum (RC) representation. I demonstrated that the FO method does not allow to capture the evolution of DOC concentration at the monthly timescale. In contrast, the FOR method captures well the degradation kinetics and I estimated a DOC half-life time of around 10 days, a value slightly inferior to the average water residence time of the Meuse, estimated at 24 days for the entire catchment, suggesting that the major part of the DOC will be decomposed before reaching the sea. However, the observed variability in kinetic constants could not be explained by the potential drivers investigated (season, land cover type, SUVA). The RC method fitted the kinetic experiments equally well, and I calculated a initial k value with this model of around 0.02 day-1, yet with significant variability. This variability in k values could also not be related to season or land cover types, but a significant correlation (R2 =0.5) was found between the kinetic constant of the RC model and SUVA, suggesting that this easy-to-measure index could be used as a proxy for DOC degradability. Thirdly, using literature data, I built a full C budget for European inland waters and investigated the extent to which transnational C transfers via the river network may impact national C budgets and inventories. A methodology was developed for the quantification of lateral C transfers through country borders and I estimated that over all Europe, on average 2.3 gC m-2 yr-1 are imported from one country to another and 4.4 gC m-2 yr-1 are exported to another country or to the sea, leading to a river net carbon balance (RNCB) for the EU of 2.1 gC m-2 yr-1. With the exception of the Netherlands, Portugal, Estonia and Ukraine, all other countries have a positive RNCB meaning that they export more C than they import as a result of the land-to-inland water C inputs within the country’s boundaries. I compared the RNCB with other component of the national C budget and more particularly to the lateral C flux attributed to wood and crop harvest trades between countries. I showed that the RNCB reaches more than 10 % of the harvest trades for half the EU countries and more than 30% for a quarter of the countries, suggesting that the RNCB should be accounted for in national C budget. In the future, our methodology could be applied to other regions of the globe and to the sole anthropogenic part of the RNCB.Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Les flux de carbone le long du continuum terre-océan européen par modÚles et observations

    No full text
    Since the industrial revolution, emissions of carbon dioxide (CO2) due to human activities have drastically increased carbon concentration in the atmosphere, perturbing the natural cycle of carbon (C). Oceans and the land biosphere have seen their C stocks increase. In order to better understand the dynamics of those sinks, it is essential to understand the link between them, the inland waters. In my thesis, I used three different methods to improve our understanding if the C dynamics in the European inland waters, with a focus on the fate of dissolved organic C (DOC) in the river network. First I applied a land surface model at the European scale to estimate and study the spatio-temporal variability of DOC leaching from land to rivers. I estimated that around 14 TgC per year are leached into the European river network, about 0.6% of the net primary production (NPP). I observed an important spatio-temporal variability with a maximum during winter and minimum in summer with the exception of nordic region where the maximum occurs in spring after the snow melt. Mes results showed that the fraction of NPP that is leached as DOC in the river primarly depends on the runoff and drainage while temperature only plays a secondary role. Secondly, I sampled the Meuse in order to study the biodegradability of DOC in the river. I estiamted a half-life time around 10 days, value inferior to the calculated water residence time in the Meuse, meaning that most of the DOC will be degraded before reaching the sea. Thirdly, based on literature, I built a C budget for European inland waters at the country scale in order to evaluate the import and export of C through border via rivers. I estimated that over Europe around 2.3 m-2 per year an-1 are imported and 4.4 gC m-2 per year exported leading to a net river C balance (RNCB) of 2.1 gC m-2 per year. With the exception of the Netherlands, Portugal, Estonia and Ukraine, all countries have a positive RNCB meani ng that the export more C than they import. I compared the RNCB against other components of the national C budget and against a other lateral flux of C between countries, the emissions related to wood and crop harvest trades. I showed that for some countries, the RNCB can be around the same order of magnitudes as harvest trades and thus should be included in national budget.Depuis la rĂ©volution industrielle, les Ă©missions de dioxyde de carbone (CO2) vers l’atmosphĂšre dues Ă  l’activitĂ© humaine ont fortement augmentĂ©es, perturbant le cycle naturel du carbone (C). Les ocĂ©ans et l’écosystĂšme terrestre ont vu leur stock en C augmenter. Afin de mieux comprendre la dynamique de ces puits, il est essentiel de s’intĂ©resser au lien antre le puits terrestre et les ocĂ©ans, c’est-Ă -dire les eaux continentales. Dans ma thĂšse, j’ai utilisĂ© trois mĂ©thodes diffĂ©rentes afin d’amĂ©liorer notre comprĂ©hension de la dynamique du C dans le rĂ©seau hydrographique EuropĂ©en et avec un focus sur le C organique dissous (COD). Tout d’abord, j’ai appliquĂ© un modĂšle du systĂšme terre Ă  l’échelle EuropĂ©enne pour estimer et Ă©tudier la variabilitĂ© spatio-temporelle du transfert du C des terres jusqu’aux riviĂšres. J’ai estimĂ© qu’en moyenne environ 14.3 TgC par an sont transfĂ©rĂ©s des terres vers le systĂšme hydrographique EuropĂ©en, ce qui reprĂ©sente envrion 0.6% de la productivitĂ© primaire nette (NPP). J’ai observĂ© Ă©galement une importante variabilitĂ© spatio-temporelle avec un maximum en hiver et un minimum en Ă©tĂ© sauf dans les rĂ©gions nordiques oĂč le maximum a lieu au printemps lors de la fonte des neiges. Mes rĂ©sultats montrent que la fraction de NPP transfĂ©rĂ©e en tant que COD vers les riviĂšres est principalement contrĂŽlĂ© par le ruissellement et le drainage. Ensuite, j’ai effectuĂ© des campagnes d’échantillonnage sur la Meuse afin d’étudier la biodĂ©gradation du COD. J’ai estimĂ© un temps de demi-vie Ă  environ 10 jours, valeur infĂ©rieure au temps de rĂ©sidence de l’eau de la Meuse estimĂ© sur tout le bassin Ă  24 jours, ce qui signifie que la majoritĂ© du COD aura Ă©tĂ© dĂ©composĂ© avant d’atteindre l’estuaire. Et finalement, sur base de la littĂ©rature, j’ai construit un budget C pour les eaux continentales pour chaque pays EuropĂ©en pour Ă©value les imports et exports de C Ă  travers les frontiĂšres via les riviĂšres. J’ai estimĂ© que sur toute l’Europe en m oyenne environ 2.3 gC m-2 an-1 sont importĂ©s et 4.4 gC m-2 an-1 sont exportĂ©s entraĂźnant un bilan net de C dans les riviĂšres (RNCB) de 2.1 gC m-2 an-1. A l’exception des Pays-Bas, du Portugal, de l’Estonie et de l’Ukraine, tous les pays ont un RNCB positif, ils exportent plus de C qu’ils n’en importent. J’ai comparĂ© le RNCB avec d’autres composants du budget national de C et ainsi qu’avec un autre flux latĂ©ral de C d’un pays vers un autre, les Ă©missions liĂ©es aux Ă©changes de rĂ©coltes de bois et d’agriculture. J’ai montrĂ© que certains pays le RNCB est du mĂȘme ordre de grandeur que les Ă©changes de rĂ©coltes et devraient donc ĂȘtre inclus dans les budget nationaux de C

    Gestion d'un problÚme sanitaire en animalerie d'expérimentation

    No full text
    LYON1-BU Santé (693882101) / SudocSudocFranceF

    Etude de l'infection expérimentale de la Souris par des virus de la FiÚvre de la Vallée du Rift recombinants

    No full text
    Le virus de la fiÚvre de la vallée du Rift (VFVR) est un arbovirus infectant aussi bien l Homme que les animaux. Pour identifier le tropisme tissulaire du VFVR et ses cellules cibles, nous avons infecté des souris Ifnar1-/- avec des virus recombinants. Nous avons visualisé l infection d organes cibles connus mais aussi d autres organes comme le pancréas. Les analyses histologiques ont révélé que les macrophages infiltrant les tissus, comme ceux présents autour du pancréas, sont infectés. Nous avons alors étudié les cellules hématopoïétiques et confirmé l infection des macrophages, cellules dendritiques et granulocytes. Pour déterminer l importance de l infection de ces cellules, nous avons induit la déplétion des cellules phagocytaires chez des souris Ifnar1-/- avant de les infecter. Cela a affecté la diffusion et/ou le confinement de l infection virale. Nos résultats confirment l importance des monocytes/macrophages et des cellules dendritiques au cours de l infection par le VFVRPARIS-BIUSJ-Biologie recherche (751052107) / SudocSudocFranceF

    Spatiotemporal patterns and drivers of terrestrial dissolved organic carbon (DOC) leaching into the European river network

    No full text
    International audienceLeaching of dissolved organic carbon (DOC) from soils into the river network is an important component of the land carbon (C) budget. At regional to global scales, its significance has been estimated through simple mass budgets, often using multi-year averages of observed fluvial DOC fluxes as a proxy of DOC leaching due to the limited availability of observations of the leaching flux itself. This procedure leads to a systematic underestimation of the leaching flux because of the decay of DOC during fluvial transport. Moreover, this procedure does not allow for revealing spatiotemporal variability in DOC leaching from soils, which is vital to better understand the drivers of DOC leaching and its impact on the local soil C budget. In this study, we use the land surface model (LSM) ORCHILEAK to simulate the terrestrial C budget, including leaching of DOC from the soil and its subsequent reactive transport through the river network of Europe. The model performance is evaluated not only against the sparse observations of the soil DOC leaching rate, but also against the more abundant observations of fluxes and reactivity of DOC in rivers, providing further evidence that our simulated DOC fluxes are realistic. The model is then used to simulate the spatiotemporal patterns of DOC leaching across Europe over the period 1972-2012, quantifying both the environmental drivers of these patterns and the impact of DOC leaching on the land C budget. Over the simulation period, we find that, on average, 14.3ĝ€¯Tgĝ€¯Cĝ€¯yr-1 of DOC is leached from land into European rivers, which is about 0.6ĝ€¯% of the terrestrial net primary production (NPP), a fraction significantly lower than that reported for tropical river networks. On average, 12.3ĝ€¯Tgĝ€¯Cĝ€¯yr-1 of the leached DOC is finally exported to the coast via the river network, and the rest is respired during transit. DOC leaching presents a large seasonal variability, with the maximum occurring in winter and the minimum in summer, except for most parts of northern Europe, where the maximum occurs in spring due to snowmelt. The DOC leaching rate is generally low in warm and dry regions, and high in the cold and wet regions of Europe. Furthermore, runoff and the ratio between runoff from shallower flow paths on one hand and deep drainage and groundwater flow on the other hand are the main drivers of the spatiotemporal variation of DOC leaching. Temperature, as a major control of DOC production and decomposition rates in the soils, plays only a secondary role
    corecore