823 research outputs found

    Developments and challenges in dermatology: an update from the Interactive Derma Academy (IDeA) 2019

    Get PDF
    The 2019 Interactive Derma Academy (IDeA) meeting was held in Lisbon, Portugal, 10–12 May, bringing together leading dermatology experts from across Europe, the Middle East and Asia. Over three days, the latest developments and challenges in relation to the pathophysiology, diagnosis, evaluation and management of dermatological conditions were presented, with a particular focus on acne, atopic dermatitis (AD) and actinic keratosis (AK). Interesting clinical case studies relating to these key topics were discussed with attendees to establish current evidence-based best practices. Presentations reviewed current treatments, potential therapeutic approaches and key considerations in the management of acne, AK and AD, and discussed the importance of the microbiome in these conditions, as well as the provision of patient education/support. It was highlighted that active treatment is not always required for AK, depending on patient preferences and clinical circumstances. In addition to presentations, two interactive workshops on the diagnosis and treatment of sexually transmitted infections/diseases (STIs/STDs) presenting to the dermatology clinic, and current and future dermocosmetics were conducted. The potential for misdiagnosis of STIs/STDs was discussed, with dermoscopy and/or reflectance confocal microscopy suggested as useful diagnostic techniques. In addition, botulinum toxin was introduced as a potential dermocosmetic, and the possibility of microbiome alteration in the treatment of dermatological conditions emphasized. Furthermore, several challenges in dermatology, including the use of lasers, the complexity of atopic dermatitis, wound care, use of biosimilars and application of non-invasive techniques in skin cancer diagnosis were reviewed. In this supplement, we provide an overview of the presentations and discussions from the fourth successful IDeA meeting, summarizing the key insights shared by dermatologists from across the globe

    Interleukin-6 trans signalling enhances photodynamic therapy by modulating cell cycling

    Get PDF
    Photodynamic therapy (PDT) of solid tumours causes tissue damage that elicits local and systemic inflammation with major involvement of interleukin-6 (IL-6). We have previously reported that PDT-treated cells lose responsiveness to IL-6 cytokines. Therefore, it is unclear whether PDT surviving tumour cells are subject to regulation by IL-6 and whether this regulation could contribute to tumour control by PDT. We demonstrate in epithelial tumour cells that while the action of IL-6 cytokines through their membrane receptors is attenuated, regulation by IL-6 via trans-signalling is established. Soluble interleukin-6 receptor-α (IL-6Rα) (sIL-6Rα) and IL-6 were released by leucocytes in the presence of conditioned medium from PDT-treated tumour cells. Cells that had lost their membrane receptor IL-6Rα due to PDT responded to treatment with the IL-6R–IL-6 complex (Hyper-IL-6) with activation of signal transducers and activator of transcription (STAT3) and ERK. Photodynamic therapy-treated cells, which were maintained during post-PDT recovery in presence of IL-6 or Hyper-IL-6, showed an enhanced suppression of proliferation. Cytokine-dependent inhibition of proliferation correlated with a decrease in cyclin E, CDK2 and Cdc25A, and enhancement of p27kip1 and hypophosphorylated Rb. The IL-6 trans-signalling-mediated attenuation of cell proliferation was also effective in vivo detectable by an improved Colon26 tumour cure by PDT combined with Hyper-IL-6 treatment. Prevention of IL-6 trans-signalling using soluble gp130 reduced curability. The data suggest that the post-PDT tumour milieu contains the necessary components to establish effective IL-6 trans-signalling, thus providing a means for more effective tumour control

    The long-term efficacy and safety of new biological therapies for psoriasis

    Get PDF
    Long-term therapy is often required for psoriasis. This article reviews the most recent long-term clinical data for biological agents that have been approved or for which late-stage development data have been released for the treatment of patients with moderate to severe plaque psoriasis. Efficacy data are available for up to five 12-week courses of alefacept (approximately 60 weeks of therapy), 36 months (144 weeks) of continuous efalizumab, 48 weeks of continuous etanercept, and 50 weeks of bimonthly infliximab. Data sources include publications, product labeling, and posters presented at recent international scientific meetings. Alefacept appears to continue to be efficacious over multiple treatment courses for some responsive patients. The efficacy of efalizumab achieved during the first 12–24 weeks of therapy appears to be maintained or improved through at least 60 weeks of continuous treatment. The efficacy of etanercept appears to be maintained through at least 48 weeks of continuous treatment. Infliximab demonstrates a high response rate soon after initiation, which appears to be maintained through 24 weeks but declines modestly with therapy out to 50 weeks. After 48 weeks, approximately 60% of efalizumab-treated and 45% of etanercept-treated patients remaining on therapy achieved ≥75% improvement from baseline in Psoriasis Area and Severity Index, as did 70.5% of infliximab patients who did not miss more than two infusions. Safety data suggest that these agents may be used for long-term administration. Long-term data from psoriasis trials continue to accumulate. Recent data suggest that biological therapies have efficacy and safety profiles suitable for the long-term treatment of patients with moderate to severe psoriasis

    Tiny abortive initiation transcripts exert antitermination activity on an RNA hairpin-dependent intrinsic terminator

    Get PDF
    No biological function has been identified for tiny RNA transcripts that are abortively and repetitiously released from initiation complexes of RNA polymerase in vitro and in vivo to date. In this study, we show that abortive initiation affects termination in transcription of bacteriophage T7 gene 10. Specifically, abortive transcripts produced from promoter ϕ10 exert trans-acting antitermination activity on terminator Tϕ both in vitro and in vivo. Following abortive initiation cycling of T7 RNA polymerase at ϕ10, short G-rich and oligo(G) RNAs were produced and both specifically sequestered 5- and 6-nt C + U stretch sequences, consequently interfering with terminator hairpin formation. This antitermination activity depended on sequence-specific hybridization of abortive transcripts with the 5′ but not 3′ half of Tϕ RNA. Antitermination was abolished when Tϕ was mutated to lack a C + U stretch, but restored when abortive transcript sequence was additionally modified to complement the mutation in Tϕ, both in vitro and in vivo. Antitermination was enhanced in vivo when the abortive transcript concentration was increased via overproduction of RNA polymerase or ribonuclease deficiency. Accordingly, antitermination activity exerted on Tϕ by abortive transcripts should facilitate expression of Tϕ-downstream promoter-less genes 11 and 12 in T7 infection of Escherichia coli

    Photodynamic therapy-generated vaccines: relevance of tumour cell death expression

    Get PDF
    Recent investigations have established that tumour cells treated in vitro by photodynamic therapy (PDT) can be used for generating potent vaccines against cancers of the same origin. In the present study, cancer vaccines were prepared by treating mouse SCCVII squamous cell carcinoma cells with photosensitiser chlorin e6-based PDT and used against poorly immunogenic SCCVII tumours growing in syngeneic immunocompetent mice. The vaccine potency increased when cells were post-incubated in culture after PDT treatment for 16 h before they were injected into tumour-bearing mice. Interfering with surface expression of phosphatidylserine (annexin V treatment) and apoptosis (caspase inhibitor treatment) demonstrated that this post-incubation effect is affiliated with the expression of changes associated with vaccine cell death. The cured mice acquired resistance to re-challenge with the same tumour, while the engagement of cytotoxic T lymphocytes was demonstrated by detection of high numbers of degranulating CD8+ cells in vaccinated tumours. The vaccines prepared from ex vivo PDT-treated SCCVII tumour tissue were also highly effective, implying that surgically removed tumour tissue can be directly used for PDT vaccines. This opens attractive prospects for employing PDT vaccines tailored for individual patients targeting specific antigens of the patient's tumour

    Subjects With Early-Onset Type 2 Diabetes Show Defective Activation of the Skeletal Muscle PGC-1α/Mitofusin-2 Regulatory Pathway in Response to Physical Activity

    Get PDF
    Objective: Type 2 diabetes is associated with insulin resistance and skeletal muscle mitochondrial dysfunction. We have found that subjects with early-onset type 2 diabetes show incapacity to increase Vo2max in response to chronic exercise. This suggests a defect in muscle mitochondrial response to exercise. Here, we have explored the nature of the mechanisms involved. Research design and methods: Muscle biopsies were collected from young type 2 diabetic subjects and obese control subjects before and after acute or chronic exercise protocols, and the expression of genes and/or proteins relevant to mitochondrial function was measured. In particular, the regulatory pathway peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha/mitofusin-2 (Mfn2) was analyzed. Results: At baseline, subjects with diabetes showed reduced expression (by 26%) of the mitochondrial fusion protein Mfn2 and a 39% reduction of the alpha-subunit of ATP synthase. Porin expression was unchanged, consistent with normal mitochondrial mass. Chronic exercise led to a 2.8-fold increase in Mfn2, as well as increases in porin, and the alpha-subunit of ATP synthase in muscle from control subjects. However, Mfn2 was unchanged after chronic exercise in individuals with diabetes, whereas porin and alpha-subunit of ATP synthase were increased. Acute exercise caused a fourfold increase in PGC-1alpha expression in muscle from control subjects but not in subjects with diabetes. Conclusions: Our results demonstrate alterations in the regulatory pathway that controls PGC-1alpha expression and induction of Mfn2 in muscle from patients with early-onset type 2 diabetes. Patients with early-onset type 2 diabetes display abnormalities in the exercise-dependent pathway that regulates the expression of PGC-1alpha and Mfn2.</p

    Is the Soleus a Sentinel Muscle for Impaired Aerobic Capacity in Heart Failure?

    Get PDF
    Purpose: Skeletal muscle wasting is well documented in chronic heart failure (CHF). This article provides a more detailed understanding of the morphology behind this muscle wasting and the relation between muscle morphology, strength, and exercise capacity in CHF. We investigated the effect of CHF on lower limb lean mass, detailed muscle–tendon architecture of the individual triceps surae muscles (soleus (SOL), medial gastrocnemius, and lateral gastrocnemius) and how these parameters relate to exercise capacity and strength. Methods: Eleven patients with CHF and 15 age-matched controls were recruited. Lower limb lean mass was assessed by dual energy x-ray absorptiometry and the architecture of skeletal muscle and tendon properties by ultrasound. Plantarflexor strength was assessed by dynamometry. Results: Patients with CHF exhibited approximately 25% lower combined triceps surae volume and physiological cross-sectional area (PCSA) compared with those of control subjects (P < 0.05), driven in large part by reductions in the SOL. Only the SOL volume and the SOL and medial gastrocnemius physiological cross-sectional area were statistically different between groups after normalizing to lean body mass and body surface area, respectively. Total lower limb lean mass did not differ between CHF and control subjects, further highlighting the SOL specificity of muscle wasting in CHF. Moreover, the volume of the SOL and plantarflexor strength correlated strongly with peak oxygen uptake (V˙O2peak) in patients with CHF. Conclusions: These findings suggest that the SOL may be a sentinel skeletal muscle in CHF and provide a rationale for including plantarflexor muscle training in CHF care

    Pre-Training Muscle Characteristics of Subjects Who Are Obese Determine How Well Exercise Training Will Improve Their Insulin Responsiveness

    Get PDF
    Pre-training muscle characteristics of subjects who are obese determine how well exercise training will improve their insulin responsiveness. J Strength Cond Res 31(3): 798–808, 2017—Only half of prediabetic subjects who are obese who underwent exercise training without weight loss increased their insulin responsiveness. We hypothesized that those who improved their insulin responsiveness might have pretraining characteristics favoring a positive response to exercise training. Thirty nondiabetic subjects who were obese volunteered for 8 weeks of either strength training or endurance training. During training, subjects increased their caloric intake to prevent weight loss. Insulin responsiveness by euglycemic clamps and muscle fiber composition, and expression of muscle key biochemical pathways were quantified. Positive responders initially had 52% higher intermediate muscle fibers (fiber type IIa) with 27% lower slow-twitch fibers (type I) and 23% lower expression of muscle insulin receptors. Whether after weight training or stationary bike training, positive responders\u27 fiber type shifted away from type I and type IIa fibers to an increased proportion of type IIx fibers (fast twitch). Muscle insulin receptor expression and glucose transporter type 4 (GLUT4) expression increased in all trained subjects, but these moderate changes did not consistently translate to improvement in whole-body insulin responsiveness. Exercise training of previously sedentary subjects who are obese can result in muscle remodeling and increased expression of key elements of the insulin pathway, but in the absence of weight loss, insulin sensitivity improvement was modest and limited to about half of the participants. Our data suggest rather than responders being more fit, they may have been less fit, only catching up to the other half of subjects who are obese whose insulin responsiveness did not increase beyond their pretraining baseline
    corecore