80 research outputs found

    Laser wakefield acceleration with mid-IR laser pulses

    Full text link
    We report on the first results of laser plasma wakefield acceleration driven by ultrashort mid-infrared laser pulses (\lambda= 3.9 \mu m, 100 fs, 0.25 TW), which enable near- and above-critical density interactions with moderate-density gas jets. Relativistic electron acceleration up to ~12 MeV occurs when the jet width exceeds the threshold scale length for relativistic self-focusing. We present scaling trends in the accelerated beam profiles, charge and spectra, which are supported by particle-in-cell simulations and time-resolved images of the interaction. For similarly scaled conditions, we observe significant increases in accelerated charge compared to previous experiments with near-infrared (\lambda=800 nm) pulses

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production

    Österreichisches Projekt Grundlagen zur Züchtung, Vermehrung und Sorten-/Saatgutprüfung für den Biolandbau: Ergebnisübersicht

    Get PDF
    In the Austrian research project “Basic principles for breeding, multiplication and variety testing for organic agriculture” (from 2004 until 2008) novel methods for the assessment of the suitability of seed and cultivars for organic farming were developed and evaluated by an interdisciplinary co-operation of researchers, breeders and variety testers. Organic farming requires specific combinations of crop plant characters, especially seed health and resistance against seed-borne diseases. Another crucial feature is the competitive ability against weeds. Early development was found to significantly increase the competitiveness of different crop plants. Genotypic variation in characters necessary for an efficient utilisation of below-ground resources was also investigated, e.g. interrelations between root development and drought stress tolerance and between mycorrhiza formation and nutrient use efficiency. Based on the results obtained in various cultivar trials, it can be concluded that genotypes suitable for organic growing conditions may be pre-selected from early breeding material of conventional breeding programmes. The selected breeding material must subsequently be rigorously tested on organically managed fields starting from the first yield trials at the latest. The project results were communicated to farmers and advisors during field days and excursions. They will be applied in the breeding of new cultivars

    A Thin Skin Calorimeter (TSC) for Quantifying Irradiation During Large-scale Fire Testing

    Get PDF
    This paper details a novel method for quantifying irradiation (incident radiant heat flux) at the exposed surface of solid elements during large-scale fire testing. Within the scope of the work presented herein, a type of Thin Skin Calorimeter (TSC) was developed intending for a practical, low cost device enabling the cost-effective mass production required for characterising the thermal boundary conditions during multiple large-scale fire tests. The technical description of the TSC design and a formulation of the proposed calibration technique are presented. This methodology allows for the quantification of irradiation by means of an a posteriori analysis based on a temperature measurement from the TSC, a temperature measurement of the gas-phase in the vicinity of the TSC and a correction factor defined during a pre-test calibration process. The proposed calibration methodology is designed to account for uncertainties inherent to the simplicity of the irradiation measurement technique, therefore not requiring precise information regarding material thermal and optical properties. This methodology is designed and presented so as to enable adaption of the technique to meet the specific requirements of other experimental setups. This is conveyed by means of an example detailing the design and calibration of a device designed for a series of large-scale experiments as part of the ‘Real Fires for the Safe Design of Tall Buildings’ project

    Assessing plume impacts caused by polymetallic nodule mining vehicles

    Get PDF
    Deep-sea mining may be just a few years away and yet society is struggling to assess the positive aspects, such as increasing the supply of metals for battery production to fuel the green revolution, versus the potentially large environmental impacts. Mining of polymetallic (manganese) nodules from the deep ocean is likely to be the first mineral resource targeted and will involve direct impacts to hundreds of km2 of seabed per mine per year. However, the mining activity will also cause the generation of large sediment plumes that will spread away from the mine site and have both immediate and long-term effects over much wider areas. We discuss what the impacts of plumes generated near the seabed by mining vehicles may be and how they might be measured in such challenging environments. Several different mining vehicles are under development around the world and depending on their design some may create larger plumes than others. We discuss how these vehicles could be compared so that better engineering designs could be selected and to encourage innovation in dealing with plume generation and spread. These considerations will aid the International Seabed Authority (ISA) that has the task of regulating mining activities in much of the deep sea in its commitment to promote the Best Available Technology (BAT) and Best Environmental Practice (BEP)

    Ecology and Biogeography of Free-Living Nematodes Associated with Chemosynthetic Environments in the Deep Sea: A Review

    Get PDF
    Background: Here, insight is provided into the present knowledge on free-living nematodes associated with chemosynthetic environments in the deep sea. It was investigated if the same trends of high standing stock, low diversity, and the dominance of a specialized fauna, as observed for macro-invertebrates, are also present in the nematodes in both vents and seeps. Methodology: This review is based on existing literature, in combination with integrated analysis of datasets, obtained through the Census of Marine Life program on Biogeography of Deep-Water Chemosynthetic Ecosystems (ChEss). Findings: Nematodes are often thriving in the sulphidic sediments of deep cold seeps, with standing stock values ocassionaly exceeding largely the numbers at background sites. Vents seem not characterized by elevated densities. Both chemosynthetic driven ecosystems are showing low nematode diversity, and high dominance of single species. Genera richness seems inversely correlated to vent and seep fluid emissions, associated with distinct habitat types. Deep-sea cold seeps and hydrothermal vents are, however, highly dissimilar in terms of community composition and dominant taxa. There is no unique affinity of particular nematode taxa with seeps or vents. Conclusions: It seems that shallow water relatives, rather than typical deep-sea taxa, have successfully colonized the reduced sediments of seeps at large water depth. For vents, the taxonomic similarity with adjacent regular sediments is much higher, supporting rather the importance of local adaptation, than that of long distance distribution. Likely the ephemeral nature of vents, its long distance offshore and the absence of pelagic transport mechanisms, have prevented so far the establishment of a successful and typical vent nematode fauna. Some future perspectives in meiofauna research are provided in order to get a more integrated picture of vent and seep biological processes, including all components of the marine ecosystem

    Research is needed to inform environmental management of hydrothermally inactive and extinct polymetallic sulfide (PMS) deposits

    Get PDF
    Polymetallic sulfide (PMS) deposits produced at hydrothermal vents in the deep sea are of potential interest to miners. Hydrothermally active sulfide ecosystems are valued for the extraordinary chemosynthetic communities that they support. Many countries, including Canada, Portugal, and the United States, protect vent ecosystems in their Exclusive Economic Zones. When hydrothermal activity ceases temporarily (dormancy) or permanently (extinction), the habitat and associated ecosystem change dramatically. Until recently, so-called "inactive sulfide" habitats, either dormant or extinct, received little attention from biologists. However, the need for environmental management of deep-sea mining places new imperatives for building scientific understanding of the structure and function of inactive PMS deposits. This paper calls for actions of the scientific community and the emergent seabed mining industry to i) undertake fundamental ecological descriptions and study of ecosystem functions and services associated with hydrothermally inactive PMS deposits, ii) evaluate potential environmental risks to ecosystems of inactive PMS deposits through research, and iii) identify environmental management needs that may enable mining of inactive PMS deposits. Mining of some extinct PMS deposits may have reduced environmental risk compared to other seabed mining activities, but this must be validated through scientific research on a case-by-case basis.FCT: IF/00029/2014/CP1230/CT0002/ UID/05634/2020/ CEECIND005262017/ UID/MAR/00350/2019; Direcao-Geral de Politica do Mar (DGPM) Mining2/2017/005/ Mining2/2017/001info:eu-repo/semantics/publishedVersio

    Involvement of a specificity proteins-binding element in regulation of basal and estrogen-induced transcription activity of the BRCA1 gene

    Get PDF
    INTRODUCTION:Increased estrogen level has been regarded to be a risk factor for breast cancer. However, estrogen has also been shown to induce the expression of the tumor suppressor gene, BRCA1. Upregulation of BRCA1 is thought to be a feedback mechanism for controlling DNA repair in proliferating cells. Estrogens enhance transcription of target genes by stimulating the association of the estrogen receptor (ER) and related coactivators to estrogen response elements or to transcription complexes formed at activator protein (AP)-1 or specificity protein (Sp)-binding sites. Interestingly, the BRCA1 gene lacks a consensus estrogen response element. We previously reported that estrogen stimulated BRCA1 transcription through the recruitment of a p300/ER-alpha complex to an AP-1 site harbored in the proximal BRCA1 promoter. The purpose of the study was to analyze the contribution of cis-acting sites flanking the AP-1 element to basal and estrogen-dependent regulation of BRCA1 transcription.METHODS:Using transfection studies with wild-type and mutated BRCA1 promoter constructs, electromobility binding and shift assays, and DNA-protein interaction and chromatin immunoprecipitation assays, we investigated the role of Sp-binding sites and cAMP response element (CRE)-binding sites harbored in the proximal BRCA1 promoter.RESULTS:We report that in the BRCA1 promoter the AP-1 site is flanked upstream by an element (5'-GGGGCGGAA-3') that recruits Sp1, Sp3, and Sp4 factors, and downstream by a half CRE-binding motif (5'-CGTAA-3') that binds CRE-binding protein. In ER-alpha-positive MCF-7 cells and ER-alpha-negative Hela cells expressing exogenous ER-alpha, mutation of the Sp-binding site interfered with basal and estrogen-induced BRCA1 transcription. Conversely, mutation of the CRE-binding element reduced basal BRCA1 promoter activity but did not prevent estrogen activation. In combination with the AP-1/CRE sites, the Sp-binding domain enhanced the recruitment of nuclear proteins to the BRCA1 promoter. Finally, we report that the MEK1 (mitogen-activated protein kinase kinase-1) inhibitor PD98059 attenuated the recruitment of Sp1 and phosphorylated ER-alpha, respectively, to the Sp and AP-1 binding element.CONCLUSION:These cumulative findings suggest that the proximal BRCA1 promoter segment comprises cis-acting elements that are targeted by Sp-binding and CRE-binding proteins that contribute to regulation of BRCA1 transcription.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]
    corecore