27 research outputs found

    Utility of a next generation framework for assessment of genomic damage: A case study using the industrial chemical benzene

    Get PDF
    We recently published a next generation framework for assessing the risk of genomic damage via exposure to chemical substances. The framework entails a systematic approach with the aim to quantify risk levels for substances that induce genomic damage contributing to human adverse health outcomes. Here, we evaluated the utility of the framework for assessing the risk for industrial chemicals, using the case of benzene. Benzene is a well‐studied substance that is generally considered a genotoxic carcinogen and is known to cause leukemia. The case study limits its focus on occupational and general population health as it relates to benzene exposure. Using the framework as guidance, available data on benzene considered relevant for assessment of genetic damage were collected. Based on these data, we were able to conduct quantitative analyses for relevant data sets to estimate acceptable exposure levels and to characterize the risk of genetic damage. Key observations include the need for robust exposure assessments, the importance of information on toxicokinetic properties, and the benefits of cheminformatics. The framework points to the need for further improvement on understanding of the mechanism(s) of action involved, which would also provide support for the use of targeted tests rather than a prescribed set of assays. Overall, this case study demonstrates the utility of the next generation framework to quantitatively model human risk on the basis of genetic damage, thereby enabling a new, innovative risk assessment concept. Environ. Mol. Mutagen. 61:94–113, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.JRC.F.3-Chemicals Safety and Alternative Method

    Opportunities to integrate new approaches in genetic toxicology: An ILSI-HESI workshop report

    Get PDF
    Genetic toxicity tests currently used to identify and characterize potential human mutagens and carcinogens rely on measurements of primary DNA damage, gene mutation, and chromosome damage in vitro and in rodents. The International Life Sciences Institute Health and Environmental Sciences Institute (ILSI-HESI) Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity Testing held an April 2012 Workshop in Washington, DC, to consider the impact of new understanding of biology and new technologies on the identification and characterization of genotoxic substances, and to identify new approaches to inform more accurate human risk assessment for genetic and carcinogenic effects. Workshop organizers and speakers were from industry, academe, and government. The Workshop focused on biological effects and technologies that would potentially yield the most useful information for evaluating human risk of genetic damage. Also addressed was the impact that improved understanding of biology and availability of new techniques might have on genetic toxicology practices. Workshop topics included (1) alternative experimental models to improve genetic toxicity testing, (2) Biomarkers of epigenetic changes and their applicability to genetic toxicology, and (3) new technologies and approaches. The ability of these new tests and technologies to be developed into tests to identify and characterize genotoxic agents; to serve as a bridge between in vitro and in vivo rodent, or preferably human, data; or to be used to provide dose response information for quantitative risk assessment was also addressed. A summary of the workshop and links to the scientific presentations are provided.International Life Sciences Institute/Health and Environmental Sciences Institute Committe

    Integration of novel approaches demonstrates simultaneous metabolic inactivation and CAR-mediated hepatocarcinogenesis of a nitrification inhibitor

    No full text
    Nitrapyrin, a nitrification inhibitor, produces liver tumors in mice at high doses. Several experiments were performed to investigate molecular, cellular, and apical endpoints to define the key events leading to the tumor formation. These data support a mode-of-action (MoA) characterized by constitutive androstane receptor (CAR) nuclear receptor activation, increased hepatocellular proliferation leading to hepatocellular foci and tumor formation. Specifically, nitrapyrin induced a dose-related increase in the Cyp2b10/CAR-associated transcript and protein. Interestingly, the corresponding enzyme activity (7-pentoxyresorufin-O-dealkylase (PROD) was not enhanced due to nitrapyrin-mediated suicide inhibition of PROD activity. Nitrapyrin exposure elicited a clear dose-responsive increase in hepatocellular proliferation in wild-type mice, but not in CAR knock-out mice, informing that CAR activation is an obligatory key event in this test material-induced hepatocarcinogenesis. Furthermore, nitrapyrin exposure induced a clear, concentration-responsive increase in cell proliferation in mouse, but not human, hepatocytes in vitro. Evaluation of the data from repeat dose and MoA studies by the Bradford Hill criteria and a Human Relevance Framework (HRF) suggested that nitrapyrin-induced mouse liver tumors are not relevant to human health risk assessment because of qualitative differences between these two species. Keywords: CAR, Mode of action, Pesticide, Metabolic inhibition/suicide inhibition, Human relevance framewor
    corecore