15 research outputs found

    FIRST-based survey of Compact Steep Spectrum sources, II. MERLIN and VLA observations of Medium-sized Symmetric Objects

    Full text link
    A new sample of candidate Compact Steep Spectrum (CSS) sources that are much weaker than the CSS source prototypes has been selected from the VLA FIRST catalogue. MERLIN `snapshot' observations of the sources at 5 GHz indicate that six of them have an FR II-like morphology, but are not edge-brightened as is normal for Medium-sized Symmetric Objects (MSOs) and FR IIs. Further observations of these six sources with the VLA at 4.9 GHz and MERLIN at 1.7 GHz, as well as subsequent full-track observations with MERLIN at 5 GHz of what appeared to be the two sources of greatest interest are presented. The results are discussed with reference to the established evolutionary model of CSS sources being young but in which not all of them evolve to become old objects with extended radio structures. A lack of stable fuelling in some of them may result in an early transition to a so-called coasting phase so that they fade away instead of growing to become large-scale objects. It is possible that one of the six sources (1542+323) could be labelled as a prematurely `dying' MSO or a `fader'.Comment: 13 pages, matches the version printed in Astronomy & Astrophysic

    Starburst Galaxies and the X-Ray Background

    Get PDF
    Integrated X-ray spectra of an evolving population of starburst galaxies (SBGs) are determined based on the observed spectra of local SBGs. In addition to emission from hot gas and binary systems, our model SBG spectrum includes a nonthermal component from Compton scattering of relativistic electrons by the intense ambient far-IR and the (steeply evolving) CMB radiation fields. We use these integrated spectra to calculate the levels of contribution of SBGs to the cosmic X-ray background assuming that their density evolves as (1+z)^q up to a maximal redshift of 5. We find that at energies <10 keV this contribution is at a level of few percent for q up to 3, and in the range of 5%-15% for q ~ 4.5. The Compton component is predicted to be the main SBG emission at high energies, and its relative contribution gets progressively higher for increasing redshift.Comment: 10 pages, 5 figures; accepted for publication in A&

    Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits.

    Get PDF
    Shoot apical meristems are stem cell niches that balance proliferation with the incorporation of daughter cells into organ primordia. This balance is maintained by CLAVATA-WUSCHEL feedback signaling between the stem cells at the tip of the meristem and the underlying organizing center. Signals that provide feedback from organ primordia to control the stem cell niche in plants have also been hypothesized, but their identities are unknown. Here we report FASCIATED EAR3 (FEA3), a leucine-rich-repeat receptor that functions in stem cell control and responds to a CLAVATA3/ESR-related (CLE) peptide expressed in organ primordia. We modeled our results to propose a regulatory system that transmits signals from differentiating cells in organ primordia back to the stem cell niche and that appears to function broadly in the plant kingdom. Furthermore, we demonstrate an application of this new signaling feedback, by showing that weak alleles of fea3 enhance hybrid maize yield traits.The fea3-0 allele was kindly provided by Victor Shcherbak, Krasnodar Res. Inst. Agric., Russia. We acknowledge funding from a collaborative agreement with Dupont Pioneer, and from NSF Plant Genome Research Program grant # IOS-1238202 and MCB-1027445, and with the support of the Gatsby Charitable Foundation (GAT3395/PR4) and Swedish Research Council (VR2013-4632) to HJ, and "Next-Generation BioGreen 21 Program (SSAC, Project No. PJ01137901)" Rural Development Administration, Republic of Korea. We also thank Ulises Hernandez for assistance with cloning, Amandine Masson for assistance with peptide assays, and members of the Jackson lab for comments on the manuscript.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group

    Blocking variant surface glycoprotein synthesis alters endoplasmic reticulum exit sites/Golgi homeostasis in Trypanosoma brucei

    Get PDF
    The predominant secretory cargo of bloodstream form Trypanosoma brucei is Variant Surface Glycoprotein (VSG), comprising ~10% total protein and forming a dense protective layer. Blocking VSG translation using Morpholino oligonucleotides triggered a precise pre/cytokinesis arrest. We investigated the effect of blocking VSG synthesis on the secretory pathway. The number of Golgi decreased, particularly in post/mitotic cells, from 3.5 ± 0.6 to 2.0 ± 0.04 per cell. Similarly, the number of ER exit sites (ERES) in post/mitotic cells dropped from (3.9 ± 0.6) to (2.7 ± 0.1) eight hours after blocking VSG synthesis. The secretory pathway was still functional in these stalled cells, as monitored using Cathepsin L. Rates of phospholipid and GPI/anchor biosynthesis were relatively unaffected, except for the level of sphingomyelin which increased. However, both ER and Golgi morphology became distorted, with the Golgi cisternae becoming significantly dilated, particularly at the trans/face. Membrane accumulation in these structures is possibly caused by reduced budding of nascent vesicles due to the drastic reduction in the total amount of secretory cargo, i.e. VSG. These data argue that the total flux of secretory cargo impacts upon the biogenesis and maintenance of secretory structures and organelles in T. brucei including the ERES and Golgi

    Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations

    Full text link
    We have performed accurate ab initio total energy calculations using the full-potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA) for the exchange-correlation potential to systematically investigate elastic properties of 18 stable, meta-stable and hypothetical hexagonal (AlB2-like) metal diborides MB2, where M = Na, Be, Mg, Ca, Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Ag and Au. For monocrystalline MB2 the optimized lattice parameters, independent elastic constants (Cij), bulk modules (B), shear modules (G) are obtained and analyzed in comparison with the available theoretical and experimental data. For the first time numerical estimates of a set of elastic parameters of the polycrystalline MB2 ceramics (in the framework of the Voigt-Reuss-Hill approximation), namely bulk and shear modules, compressibility, Young's modules, Poisson's ratio, Lame's coefficients are performed.Comment: 24 pages, 3 figure

    Signals Derived from YABBY Gene Activities in Organ Primordia Regulate Growth and Partitioning of Arabidopsis Shoot Apical Meristems[W]

    No full text
    Shoot apical meristems (SAMs) are self-sustaining groups of cells responsible for the ordered initiation of all aerial plant tissues, including stems and lateral organs. The precise coordination of these processes argues for crosstalk between the different SAM domains. The products of YABBY (YAB) genes are limited to the organ primordium domains, which are situated at the periphery of all SAMs and which are separated by a margin of three to seven cells from the central meristem zone marked by WUSCHEL and CLAVATA3 expression. Mutations in the two related YAB1 genes, FILAMENTOUS FLOWER and YABBY3 (YAB3), cause an array of defects, including aberrant phyllotaxis. We show that peripheral YAB1 activity nonautonomously and sequentially affects the phyllotaxis and growth of subsequent primordia and coordinates the expression of SAM central zone markers. These effects support a role for YAB1 genes in short-range signaling. However, no evidence was found that YAB1 gene products are themselves mobile. A screen for suppression of a floral YAB1 overexpression phenotype revealed that the YAB1-born signals are mediated in part by the activity of LATERAL SUPPRESSOR. This GRAS protein is expressed at the boundary of organ primordia and the SAM central zone, distinct from the YAB1 expression domain. Together, these results suggest that YAB1 activity stimulates signals from the organs to the meristem via a secondary message or signal cascade, a process essential for organized growth of the SAM

    The NGATHA Distal Organ Development Genes Are Essential for Style Specification in Arabidopsis[W]

    No full text
    Floral organ identities are specified by a few transcription factors that act as master regulators. Subsequently, specification of organ axes programs the distribution of distinct tissue types within the organs that themselves develop unique identities. The C-class, AGAMOUS-clade MADS box genes are primary promoters of the gynoecium, which is divided into a distal style and a subtending ovary along the apical-basal axis. We show that members of a clade of B3 domain transcription factors, NGATHA1 (NGA1) to NGA4, are expressed distally in all lateral organs, and all four have a redundant and essential role in style development. Loss of all four genes results in gynoecia where style is replaced by valve-like projections and a reduction in style-specific SHATTERPROOF1 (SHP1) expression. In agreement, floral misexpression of NGA1 promotes ectopic style and SHP1 expression. STYLISH1, an auxin biosynthesis inducer, conditionally activated NGA genes, which in turn promoted distal expression of other STY genes in a putative positive feedback loop. Inhibited auxin transport or lack of YABBY1 gene activities resulted in a basally expanded style domain and broader expression of NGA genes. We speculate that early gynoecium factors delimit NGA gene response to an auxin-based signal, elicited by STY gene activity, to restrict the activation of style program to a late and distal carpel domain
    corecore