169 research outputs found

    Collisions of particles in locally AdS spacetimes II Moduli of globally hyperbolic spaces

    Get PDF
    We investigate 3-dimensional globally hyperbolic AdS manifolds containing "particles", i.e., cone singularities of angles less than 2π2\pi along a time-like graph Γ\Gamma. To each such space we associate a graph and a finite family of pairs of hyperbolic surfaces with cone singularities. We show that this data is sufficient to recover the space locally (i.e., in the neighborhood of a fixed metric). This is a partial extension of a result of Mess for non-singular globally hyperbolic AdS manifolds.Comment: 29 pages, 3 figures. v2: 41 pages, improved exposition. To appear, Comm. Math. Phys. arXiv admin note: text overlap with arXiv:0905.182

    Azelastine potentiates antiasthmatic dexamethasone effect on a murine asthma model

    Get PDF
    Glucocorticoids are among the most effective drugs to treat asthma. However, thesevere adverse effects associated generate the need for its therapeutic optimization. Conversely, though histamine is undoubtedly related to asthma development, there is a lack of efficacy of antihistamines in controlling its symptoms, which prevents their clinical application. We have reported that antihistamines potentiate glucocorticoids? responses in vitro and recent observations have indicated that the coadministration of an antihistamine and a synthetic glucocorticoid has synergistic effects on a murine model of allergic rhinitis. Here, the aim of this work is to establish if this therapeutic combination could be beneficial in a murine model of asthma. We used an allergen‐induced model of asthma (employing ovalbumin) to evaluate the effectsof the synthetic glucocorticoid dexamethasone combined with the antihistamineazelastine. Our results indicate that the cotreatment with azelastine and a suboptimal dose of dexamethasone can improve allergic lung inflammation as shown by a decrease in eosinophils in bronchoalveolar lavage, fewer peribronchial and perivascular infiltrates, and mucin‐producing cells. In addition, serum levels of allergen‐specific IgE and IgG1 were also reduced, as well as the expression of lung inflammatory‐related genes IL‐4, IL‐5, Muc5AC, and Arginase I. The potentiation of dexamethasone effects by azelastine could allow to reduce the effective glucocorticoid dose needed to achieve a therapeutic effect. These findings provide first new insights into the potential benefits of glucocorticoids and antihistamines combination for the treatment of asthma and grants further research to evaluate this approach in other related inflammatory conditions.Fil: Zappia, Carlos Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones FarmacolĂłgicas. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de Investigaciones FarmacolĂłgicas; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones FarmacolĂłgicas. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de Investigaciones FarmacolĂłgicas; ArgentinaFil: Soto, Ariadna Soledad. Universidad Nacional de San MartĂ­n. Escuela de Ciencia y TecnologĂ­a. Centro de Estudios en Salud y Medio Ambiente; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Granja Galeano, Gina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones FarmacolĂłgicas. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de Investigaciones FarmacolĂłgicas; ArgentinaFil: Fenoy, Ignacio MartĂ­n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de San MartĂ­n. Escuela de Ciencia y TecnologĂ­a. Centro de Estudios en Salud y Medio Ambiente; ArgentinaFil: Fernandez, Natalia Cristina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones FarmacolĂłgicas. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de Investigaciones FarmacolĂłgicas; ArgentinaFil: Davio, Carlos Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones FarmacolĂłgicas. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de Investigaciones FarmacolĂłgicas; ArgentinaFil: Shayo, Carina Claudia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; ArgentinaFil: Fitzsimons, Carlos P.. University of Amsterdam; PaĂ­ses BajosFil: Goldman, Alejandra. Universidad Nacional de San MartĂ­n. Escuela de Ciencia y TecnologĂ­a. Centro de Estudios en Salud y Medio Ambiente; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Monczor, Federico. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones FarmacolĂłgicas. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de Investigaciones FarmacolĂłgicas; Argentin

    True Superconductivity in a 2D "Superconducting-Insulating" System

    Full text link
    We present results on disordered amorphous films which are expected to undergo a field-tuned Superconductor-Insulator Transition. Based on low-field data and I-V characteristics, we find evidence of a low temperature Metal-to-Superconductor transition. This transition is characterized by hysteretic magnetoresistance and discontinuities in the I-V curves. The metallic phase just above the transition is different from the "Fermi Metal" before superconductivity sets in.Comment: 3 pages, 4 figure

    Charge symmetry breaking via rho-omega mixing from model quark-gluon dynamics

    Full text link
    The quark-loop contribution to the ρ0−ω\rho^0-\omega mixing self-energy function is calculated using a phenomenologically successful QCD-based model field theory in which the ρ0\rho^0 and ω\omega mesons are composite qˉq\bar{q}q bound states. In this calculation the dressed quark propagator, obtained from a model Dyson-Schwinger equation, is confining. In contrast to previous studies, the meson-qˉq\bar{q}q vertex functions are characterised by a strength and range determined by the dynamics of the model; and the calculated off-mass-shell behaviour of the mixing amplitude includes the contribution from the calculated diagonal meson self-energies. The mixing amplitude is shown to be very sensitive to the small isovector component of dynamical chiral symmetry breaking. The spacelike quark-loop mixing-amplitude generates an insignificant charge symmetry breaking nuclear force.Comment: 11 Pages, 3 figures uuencoded and appended to this file, REVTEX 3.0. ANL-PHY-7718-TH-94, KSUCNR-004-94. [!! PostScript file format corrected. Retrieve by anonymous ftp from theory.phy.anl.gov (130.202.20.190), directory pub: mget wpfig*.ps Three files.

    Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia

    Get PDF
    Neurodevelopmental processes are widely believed to underlie schizophrenia. Analysis of brain texture from conventional magnetic resonance imaging (MRI) can detect disturbance in brain cytoarchitecture. We tested the hypothesis that patients with schizophrenia manifest quantitative differences in brain texture that, alongside discrete volumetric changes, may serve as an endophenotypic biomarker. Texture analysis (TA) of grey matter distribution and voxel-based morphometry (VBM) of regional brain volumes were applied to MRI scans of 27 patients with schizophrenia and 24 controls. Texture parameters (uniformity and entropy) were also used as covariates in VBM analyses to test for correspondence with regional brain volume. Linear discriminant analysis tested if texture and volumetric data predicted diagnostic group membership (schizophrenia or control). We found that uniformity and entropy of grey matter differed significantly between individuals with schizophrenia and controls at the fine spatial scale (filter width below 2 mm). Within the schizophrenia group, these texture parameters correlated with volumes of the left hippocampus, right amygdala and cerebellum. The best predictor of diagnostic group membership was the combination of fine texture heterogeneity and left hippocampal size. This study highlights the presence of distributed grey-matter abnormalities in schizophrenia, and their relation to focal structural abnormality of the hippocampus. The conjunction of these features has potential as a neuroimaging endophenotype of schizophrenia

    Dynamic nuclear polarization and spin-diffusion in non-conducting solids

    Full text link
    There has been much renewed interest in dynamic nuclear polarization (DNP), particularly in the context of solid state biomolecular NMR and more recently dissolution DNP techniques for liquids. This paper reviews the role of spin diffusion in polarizing nuclear spins and discusses the role of the spin diffusion barrier, before going on to discuss some recent results.Comment: submitted to Applied Magnetic Resonance. The article should appear in a special issue that is being published in connection with the DNP Symposium help in Nottingham in August 200

    The natural capital accounting opportunity: Let s really do the numbers

    Get PDF
    This work was conducted as a part of the “Accounting for U.S. Ecosystem Services at National and Subnational Scales” working group supported by the National Socio-Environmental Synthesis Center under funding received from the National Science Foundation (grant no. DBI-1052875) and the US Geological Survey John Wesley Powell Center for Analysis and Synthesis (grant no. GX16EW00ECSV00)

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    Experimental progress in positronium laser physics

    Get PDF
    • 

    corecore