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COLLISIONS OF PARTICLES IN LOCALLY ADS SPACETIMES II
MODULI OF GLOBALLY HYPERBOLIC SPACES

THIERRY BARBOT, FRANCESCO BONSANTE, AND JEAN-MARC SCHLENKER

Abstract. We investigate globally hyperbolic 3-dimensional AdS manifolds containing “parti-
cles”, i.e., cone singularities of angles less than 2π along a time-like graph Γ. To each such space
we associate a graph and a finite family of pairs of hyperbolic surfaces with cone singularities.
We show that this data is sufficient to recover the space locally (i.e., in the neighborhood of a
fixed metric). This is a partial extension of a result of Mess for non-singular globally hyperbolic
AdS manifolds.
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1. Introduction

1.1. The 3-dimensional AdS space. The anti-de Sitter space, AdSn, is a complete
Lorentzian manifold of constant curvature −1. It can be defined as a quadric in the space
Rn−1,2, that is, Rn+1 endowed with a symmetric bilinear form of signature (n− 1, 2):

AdSn = {x ∈ Rn−1,2 | 〈x, x〉 = −1} .

In some ways, AdS3 can be considered as a Lorentz analog of hyperbolic 3-space. We are
interested here in manifolds endowed with a geometric structure which, outside some singular
locus, is locally isometric to AdS3.

1.2. Globally hyperbolic AdS spacetimes. A Lorentz 3-manifold M is AdS if it is locally
modeled onAdS3. Such a manifold is globally hyperbolic maximal compact (GHMC) if it contains
a closed, space-like surface S, if any inextendible time-like curve inM intersects S exactly once,
and ifM is maximal under this condition (any isometric embedding ofM in an AdS 3-manifold
satisfying the same conditions is actually an isometry). Those manifolds can in some respects
be considered as Lorentz analogs of quasifuchsian hyperbolic 3-manifolds.

Let S be a closed surface of genus at least 2. A well-known theorem of Bers [Ber60] asserts
that the space of quasifuchsian hyperbolic metrics on S × R (considered up to isotopy) is in
one-to-one correspondence with TS × TS, where TS is the Teichmüller space of S.

In his 1990 IHES preprint, published only in 2007 [Mes07, ABB+07], G. Mess discovered a
remarkable analog of this theorem for globally hyperbolic maximal anti-de Sitter spacetimes:
the space of GHM AdS metrics on S×R is also parameterized by TS×TS . Both the Bers and the
Mess results can be described as “stereographic pictures”: the full structure of a 3-dimensional
constant curvature spacetime is encoded in a pair of hyperbolic metrics on a surface.

To understand this result more precisely, recall that the identity component of the isometry
group of AdS3, O0(2, 2), is isomorphic, up to finite index, to PSL(2,R)× PSL(2,R). Given a
3-dimensional globally hyperbolic maximal compact AdS spacetime M , it is homeomorphic to
S × R, where S is a closed surface which can be chosen to be any Cauchy surface in M . Then
M is isometric to Ω/h(π1(S)), where Ω is a convex subset of AdS3 and h : π1(S) → O0(2, 2)
is a homomorphism, which can be written as (hl, hr) in the identification of O0(2, 2) with
PSL(2,R)× PSL(2,R).

Theorem 1.1 (Mess [Mes07]). The homomorphisms hl and hr are holonomy representations
of hyperbolic metrics on S and can be identified with points in the Teichmüller space TS of S.
The map sending M to (hl, hr) ∈ TS × TS is a homeomorphism.

The key point in the proof given by Mess is to show that hl and hr have maximal Euler
number. By a celebrated result of Goldman [Gol88], this maximality implies that they are
Fuchsian representations.
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1.3. Cone singularities. Cone singularities along curves have been studied often in hyperbolic
geometry, see e.g. [CHK00, BLP05]. A basic model space is the metric space H3

θ, θ ∈ (0, 2π),
defined as follows. Let ∆ be a geodesic in H3, and let P, P ′ be two half-planes bounded by ∆,
such that the oriented angle between P and P ′ is θ. Then H3

θ is obtained by “cutting out” the
part of H3 bounded by P and P ′ (with angle θ along ∆) and isometrically gluing the boundary
half-planes by the isometry which is the identity on ∆.

A hyperbolic cone-spacetime with singular locus a link is a metric space where each point has
a neighborhood isometric to a neighborhood of H3

θ, for some θ ∈ (0, 2π). A key rigidity result
for closed 3-dimensional cone-spacetimes with singular locus a link and cone angles in (0, 2π)
was proved by Hodgson and Kerckhoff [HK98], and had a profound influence on hyperbolic
geometry in recent years, see e.g. [BBES03]. More recently this rigidity result was extended to
closed hyperbolic cone-spacetimes with singular set a graph, see [MM11, Wei]

1.4. AdS spacetimes and particles. 3-dimensional AdS spacetimes were first studied as a
lower-dimensional toy model of gravity: they are solutions of Einstein’s equation, with negative
cosmological constant but without matter. A standard way to add physical relevance to this
model is to consider in those AdS spacetimes some point particles, modeled by cone singularities
along time-like lines (see e.g. [tH96, tH93]). They can be described as we did in Section 1.3
in the case of hyperbolic geometry: the geodesic ∆ has to be a time-like geodesic in AdS3 and
P , P ′ are time-like totally geodesic half-planes bounding ∆, with cone angle θ. If we remove
the region bounded by P and P ′ and glue the boundary half-plane by the unique AdS-isometry
sending P and P ′ which is the identity on ∆, we obtain a spacetime containing a singular line.

Here we will call “massive particle” such a cone singularity, of angle less than 2π, along
a time-like line. The condition that the angle is less than 2π is usually made by physicists,
who consider it as corresponding to the positivity of mass. Here, as in [BBS11], it is also
mathematically relevant.

Globally hyperbolic AdS spaces with such particles were considered in [BS09], when the cone
angles are less than π. It was shown that a satisfactory extension of Theorem 1.1 exists in
this setting, with elements of the Teichmüller space of S replaced by hyperbolic metrics with
cone singularities, with cone angles equal to the angles at the “massive particles”. There are
corresponding results in the hyperbolic case [MS09, LS09] where the Bers double uniformization
theorem extends to quasifuchsian manifolds with “particles”: cone singularities along infinite
lines, with angle in (0, π). Here, by contrast, we allow cone angles to go all the way to 2π. This
is a crucial difference since it allows massive particles to “interact” in interesting ways.

More general types of particles, including cone singularities along time-like or light-like lines
and “black hole” singularities, are considered in [BBS11], where the reader can find a local
description at the interaction points as well as some global examples and related constructions.
Here we focus on massive particles only, our main goal is to show how the moduli space of
globally hyperbolic AdS metrics with interacting massive particles, on a given 3-spacetime, can
be locally parameterized by finite sequences of pairs of hyperbolic surfaces with cone singu-
larities. This can be considered as a first step towards an extension of the Bers-type result of
Mess [Mes07] quoted above. However the collisions between particles mean that the situation
is much richer and more complex than for angles less than π as considered in [BS09], where no
collision occurs.

1.5. Left and right metrics of spacial slices. A precise definition of the spacetimes with
collision considered here is introduced in Definition 2.4. It is basically a pile of “spacial slices”,
each the product of a closed surface by an interval, containing particles but no collision, so
that the collisions occur on the common boundary of two adjacent slices. We require that each
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such boundary surface contains a unique collision. In Section 2.4 we introduce a notion of m-
spacetime, where m stands for “maximal”, and prove that every admissible spacetime embeds
in a unique m-spacetime satisfying a natural condition (Lemmas 2.6 and 2.7).

In Section 3 we study the holonomy representation of admissible spacetimes. We define a
notion of admissible holonomy, and prove that small (admissible) deformations of an admissible
spacetime are parameterized by small (admissible) deformations of its holonomy representation
(Theorem 3.3).

This leads in Section 4 to the analysis of the left and right holonomies of a spacetime with
collisions. In the non-singular setting, those left and right holonomies can be defined, as in
[Mes07], using the decomposition of the identity component of SO(2, 2) as the product of two
copies of PSL(2,R). When cone singularities are present, however, this viewpoint is useful
but sometimes not very convenient. In Section 4.1 we introduce two flat connections on a 3-
dimensional AdS manifold and use them in Section 4.2 to construct a metric, locally isometric
to H2 ×H2, on the space of time-like geodesics in a 3-dimensional AdS manifold.

In Section 4.3 we define a notion of “transverse vector field” along a space-like surface in
an AdS manifold: it is basically a time-like vector field which behaves well at the particles
and does not “rotate” too quickly. Using such a vector field along a space-like surface S, and
the metric defined above on the space of time-like geodesics, it is possible to define on S two
hyperbolic metrics, with cone singularities of equal angle at the intersection with the particles
(see Proposition 4.20).

Those two metrics are called the left and right hyperbolic metrics of the slice, they do not
depend on the choice of S or of the transverse vector field (see Lemma 4.23) and their holonomy
representations are the left and right components of the holonomy representation of the AdS
structure.

This construction based on a transverse vector field is more general and more flexible than
that used in [KS07, BS09], which used space-like surfaces with more stringent constraints. The
added flexibility is necessary here to understand how the two metrics change when the surface
S moves across a particle interaction.

1.6. Stereographic picture of spacetimes with colliding particles. To each AdS space-
time with interacting particles is associated a sequence (or more precisely a graph) of “spacial
slices”, each corresponding to a domain where no interaction occurs. To each slice we asso-
ciate as explained above a “stereographic picture”: a “left” and a “right” hyperbolic metric,
both with cone singularities of the same angles, which together are sufficient to reconstruct the
spacial slice. This construction is described in Section 5.4.

A new but apparently natural notion occurs, that of a “good” spacial slice: one containing
space-like surfaces with a transverse vector field. There are examples of spacetimes containing
a “good” spacial slice which stop being “good” after a particle interaction. A GHMC AdS
spacetimes with particles is “good” if it is made of good space-like slices, see Definition 5.11.

Adjacent spacial slices are “related” by a particle interaction. In Section 5.2 we show that
the left and right hyperbolic metrics before and after the interaction in a good space-time are
related by a surgery involving, for both the left and right metrics, the link of the interaction
point: for both the left and right metrics, a topological disk is found, isometric to a large
enough disk in the past component of the link of the interaction point, and each of those disks
is replaced (in a compatible way) by a large enough disk in the future component of the link of
the interaction point — see Definition 5.7 and Proposition 5.9. Since the same surgery is done
on both the left and the right hyperbolic metrics, we use the term “double surgery”.

As a consequence, to a good AdS space-time with particles, we can associate two distinct
pieces of information:
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• a “topological data”, namely the position of the singular graph (the particles along with
the interaction points) in the spacetime,

• a “geometric data”, where to each spatial slice is associated a pair of hyperbolic surfaces
with cone singularities (a “stereographic picture”), and to each interaction point is
associated a double surgery (see Definition 5.16).

This is developed in Section 5.5.

1.7. The stereographic picture is a complete description (locally). In Section 6 we show
that this locally provides a complete description of possible AdS spaces with interacting massive
particles, i.e., given an AdS metric g with interacting particles, a small neighborhood g in the
space of AdS metrics with interacting particles with the same singular graph is parameterized
by the admissible deformations of the topological geometric data associated to the spacial slices.
This is Theorem 6.1, which can be informally formulated here as follows.

Theorem 1.2. Let M be an admissible AdS spacetime with interacting particles, and let (T,G)
be the associated topological and geometric data. Then M is uniquely determined by (T,G).
Moreover, any small enough deformation of G corresponds to an admissible AdS spacetime
with interacting particles close to M , with the same topological data T .

This statement is obviously informal since we did not introduce yet a number of notions
necessary to make it precise, in particular concerning the space of topological and geometric
data, etc. The precise form of the statement can be found below as Theorem 6.1.

In the non-singular case (Theorem 1.1) the parameterization of the space of GHMC AdS
spacetimes by 2-dimensional data — a pair of hyperbolic metrics — is not only local, but
global. It is of course natural to wonder whether it could be possible to extend Theorem 6.1
to a global existence theorem of an admissible AdS spacetime with particles having a given
topological and geometric data. This question leads to new issues that we do not consider here.

1.8. Contents. The exposition below goes from the more general arguments to those tailored
more specifically for AdS spacetimes with interacting particles.

In Section 2 we define the notion of admissible AdS spacetime with particles occuring in
Theorem 1.2, and prove basic statements on the extension of isometries on AdS spacetimes
with interacting particles.

In Section 3 we consider more specifically the holonomy representation of admissible AdS
spacetimes with particles. The main result is Theorem 3.3, which states that small deformations
of the AdS structure are in one-to-one correspondence to “admissible” deformations of the
holonomy representation.

In Section 4, we define a notion of good spacelike slice and define the left and right hyperbolic
metrics associated to such a slice. We then consider more specifically the properties of those
left and right metrics in relation with a collision point in the boundary of the spacelike slice.

Section 5 deals with the change in the left and right metrics when a collision happens. The
central notion of double surgery is introduced there. It is then possible to define precisely the
topological and geometric data associated to an AdS spacetime with interacting particles.

Section 6 contains the main result of the paper, Theorem 6.1 (which is the same as Theorem
1.2 but stated more precisely).

The appendix contains a more technical development which is not necessary for the proof
of the main result but which should clarify, for the more interested readers, the definition
of a double surgery; it shows why this definition, which could at a first sight appear more
complicated than necessary, is actually relevant.
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2. The space of maximal spacetimes with collisions

2.1. Singular AdS spacetimes. This paper is to some extend a continuation of [BBS11],
where we studied the geometry of 3-dimensional AdS spacetimes with interacting particles.
The particles considered in [BBS11] are more general than those under consideration here,
since they are cone singularities on a space-like, a light-like, or a time-like curve, as well as
more exotic objects (black holes or white holes). Here by contrast we only consider massive
particles, that is, cone singularities along time-like segments.

However we will rely at some point on the analysis made in [BBS11] of the geometry near
an “interaction of particles”, that is, a vertex of the singular graph. Let us briefly recall here
a simplified version of the notion of HS-surfaces introduced in [BBS11], suited to the purpose
of the present paper, which allows to describe collisions of massive particles. Let p be a point
in AdS3. The tangent of space TpAdS3 is a copy of Minkowski space R1,2. The link L(p) at p
is the space of non-oriented geodesic rays based at p; it is naturally identified with the space
HS2 of half-lines in the vector space R1,2. It admits a natural decomposition in five subsets:

• the domains H2
+ and H2

− comprising respectively future oriented and past oriented time-
like rays,

• the domain dS2 comprising space-like rays,
• the two circles ∂H2

+ and ∂H2
−, boundaries of H

2
± in HS2.

The domains H2
± are notoriously Klein models of the hyperbolic plane, and dS2 is the Klein

model of de Sitter space of dimension 2. The group SO0(1, 2), i.e. the group of of time-
orientation preserving and orientation preserving isometries of R1,2, acts naturally (and projec-
tively) on HS2, preserving this decomposition.

Definition 2.1. A HS-surface is a topological surface endowed with a (SO0(1, 2),HS
2)-

structure.

A HS-surface admits a decomposition in hyperbolic and de Sitter regions, delimited by lines
or circles of photons, corresponding to the circles ∂H2

± in HS2.
We now define the notion of singular HS-surface. Since here we only consider massive par-

ticles, we can restrict the definition given in [BBS11] and adopt the following definition:

Definition 2.2. A singular HS-surface is a topological surface Σ containing a finite subset
P = {p1, ..., pk} (the singular points) such that the regular part Σreg = Σ \ P is a HS-surface.
Moreover, we require that every singular point pi admits an open neighborhood Ui such that
Ui \ {pi} lies in the hyperbolic region of Σ, and is isometric to the neighborhood of the singular
point in H2

θi
for some θi in [0, 2π].

Given a singular HS-surface Σ homeomorphic to the sphere S2, one can construct a 3-manifold
e(Σ) containing a closed subset L (the singular locus) such that e(Σ) \ L is a regular AdS-
spacetime, and such that L is the union of a single point p0 (the collision point) and singular
rays which are massive particles based at p0. More precisely, Σ can be interpreted as the space
of geodesic rays starting from p0, every singular point pi corresponding to a massive particle
beginning or finishing at p0.

Mathematically speaking, the singularity along each singular ray in L is a cone singularity
along a timelike line. If the cone angle is less than 2π there is a simple way to describe this
singularity. Consider the region of the Anti de Sitter space U bounded by two timelike half-
planes that meet along a time-like geodesic l and that form an angle θ. Then the space obtained
by gluing the faces of U by a rotation around l is the model of a particle of cone angle θ.
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Here we require all the masses to be positive, meaning that every θi is less than 2π. According
to [BBS11, Theorem 5.6], and due to our restrictions here, there are only two possibilities:

• Σ has no de Sitter region, i.e. is reduced to its hyperbolic region. If this hyperbolic
region is future (i.e. develops into H+), then e(Σ) is contained in the future of p0,
which can be interpreted as a “Big Bang” singularity. If not, then p0 is a “Big Crunch”
singularity.

• Σ has one future hyperbolic region and a past hyperbolic region, both homeomorphic to
the disc, and are connected by a unique de Sitter region homeomorphic to the annulus.
The rays contained in the past of p0 correspond to the elements of P lying in the future
hyperbolic component; they are massive particles colliding at p0. This collision produces
a new set of massive particles which are the singular rays in the future of p0.

Figure 1 illustrates the second situation: it represents the collision of two massive particles
producing only one massive particle.

Figure 1. A collision of two particles.

Remark 2.3. Let θ1, θ2 denote the cone angle of the two massive particles in the past, and let
θ be the cone angle of the massive particle in the future. Observe that the holonomy around
the future singular point is a rotation of angle θ, that must be equal to the composition of one
rotation of angle θ1 and a rotation of angle θ2 with distinct centers of rotation. Hence we have
the inequality θ < θ1+ θ2, which could at first glance appears as a violation of the conservation
of mass. Actually there is no paradox here and this phenomena is well-known by physicists, the
point is that the preserved quantity is the energy-momentum. Here we don’t develop further
this kind of consideration, and refer (for example) to [HM99, section 3].

2.2. Globally hyperbolic AdS spacetimes with particles. In [BBS11] we did a detailed
study of the notion of global hyperbolicity in the case of AdS-spacetimes with particle. We
proved in particular (Proposition 6.24) that a globally hyperbolic AdS-spacetime with particles
and no interaction (i.e. without collision) admits a maximal globally hyperbolic extension,
which is unique up to isometry. As pointed out in [BBS11, Remark 6.25], this result is com-
pletely false if one allows collisions. Indeed, once a collision occurs, there is no way to predict
how many particles will be produced by the collision, and in which direction they will propagate
(except in the special case where only one particle is produced). Hence, Proposition 6.24 in
[BBS11] must be understood as a result on the uniqueness of maximal extensions of globally
hyperbolic spacetimes, as long as collisions do not occur. Such a spacetime, which can be max-
imal among spacetimes without collision, may still be extended in a bigger globally hyperbolic
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spacetime, but where some collision must happen, and what happens after the collision is not
uniquely determined.

The point here is that given a AdS spacetime M with interacting particles and a Cauchy
surface S inM containing no collision, there is a unique maximal globally hyperbolic spacetime
M(S) with particles but containing no collision, which must coincide in the neighborhood of S
to a neighborhood of S inside M . This observation will be crucial in the section 2.4 where we
introduce the notion of m-spacetime.

2.3. Admissible AdS spacetimes with interacting particles. We consider in this paper
AdS spacetimes with collisions of particles, defined as pairs (M,T ) where

• M is a differentiable manifold and T is a closed graph embedded in M ,
• a smooth AdS metric is defined on Mreg =M \ T ,
• each edge of T is a massive particle, that is a cone singularity along a time-like curve;
• each vertex of T is a collision. This means that a neighborhood of each vertex isomet-
rically embeds in a collision model e(Σ) for some HS-surface Σ.

Notice that we do not consider here the cases where e(Σ) is a Big Bang or a Big Crunch.
Given an AdS spacetime with particles (M,T ), we define an isotopy in (M,T ) as a homeomor-

phism φ :M →M such that there exists a one-parameter family (φt)t∈[0,1] of homeomorphisms
from M to M , with φ0 = Id, φ1 = φ, such that each φt sends the singular set of M to itself.
Two domains in M are isotopic if there is an isotopy relative to T sending one to the other.

We will assume that the cone angle at each edge is in (0, 2π) (positivity of the mass) and
that the the link of any vertex of T is an HS-surface with positive mass (see Definition 4.2 of
[BBS11]).

We will also require some natural causal properties. First we will consider the case where M
is topologically the product Sg × R, where Sg is a closed surface of genus g. We require that
there is a sequence of embedded closed space-like surfaces S1, S2, . . . , Sn in M which do not
meet the vertices of T such that:

• Sk+1 is contained in the future of Sk,
• the region bounded by Sk and Sk+1 contains exactly one collision,
• the past of S1 and the future of Sn do not contain any collision point,
• inextendible causal curves meet every Sk at one point.

Since the future and the past of each point of T is defined, curves ending at T are extendible.
Moreover, since it is possible to construct an inextendible causal curve contained in T , T meets
each surface Sk.

Definition 2.4. An AdS spacetime with collisions is admissible if it satisfies the conditions
above.

Remark 2.5. In general, the sequence Sk is not unique up to isotopies of the pair (M,T ).
However S1 and Sn are uniquely determined up to isotopy by the property that the past of S1

and the future of Sn do not contain collision points.

2.4. Maximal spacetimes. LetM be an admissible spacetime with collisions. Let us consider
a space-like surface Si (resp. Sf) in M such that the past of Si and the future of Sf do not
contain any collision point.

The past of Si in M can be thickened to a maximal globally hyperbolic spacetime without
collision containing Si, say Mi . Analogously the past of Sf can be thickened to a maximal
globally hyperbolic spacetime without collision, say Mf . Note that the notion of maximal
globally hyperbolic spacetime without collision used here is taken from [BBS11], that is, it
corresponds to a spacetime which extends up to the point where a collision between the particles



COLLISIONS OF PARTICLES 9

is bound to happen. The existence of the maximal globally hyperbolic spacetimes Mi and Mf

follow from [BBS11, Proposition 6.24].
The maximality of Mi shows that I−M (Si) isometrically embeds in Mi. In general its image

in Mi is contained in the past of Si in Mi, but does not coincide with it.
We say that M is a m-spacetime, if the following conditions hold.

• I−M(Si) isometrically embeds in Mi and coincides with I−Mi
(Si),

• I+M(Sf) isometrically embeds in Mf and coincides with I+Mf
(Sf).

Lemma 2.6. Every admissible spacetime with collisions embeds in a m-spacetime.

Proof. Let Si and Sf be space-like surfaces as above and denote by Ui (resp. Uf ) the past (resp.
the future) of Si (resp. Sf) in M . Clearly Ui embeds in Mi. Let Vi be the past of Ui in Mi

(and analogously let Vf be the future of Uf in Mf ).
Then Vi and Vf can be glued to M by identifying Ui to its image in Vi and Ui to its image

in Uf . The spacetime obtained in this way, say M ′, is clearly a m-spacetime. �

Let M be an admissible spacetime with collisions and T be its singular locus. We say that
M is maximal if every isometric embedding

(M,T ) → (M ′, T ′)

that restricted to T is a bijection with the singular locus T ′ of M ′, is actually an isometry.

Lemma 2.7. Every m-spacetime is maximal. Every admissible spacetime (M,T ) isometrically
embeds in a unique m-spacetime (M ′, T ′) such that each vertex of T ′ is the image of a vertex
of T .

Proof. We sketch the proof, leaving details to the reader.
Let (M,T ) be an admissible spacetime and let π : (M,T ) → (Mm, Tm) be the m-extension

constructed in Lemma 2.6.
We need to prove that given any isometric embedding

ι : (M,T ) → (M ′, T ′)

which restricts to a bijection between T and T ′, there is an embedding π′ : (M ′, T ′) → (Mm, Tm)
such that π = π′ ◦ ι.

Let Si, Sf be space-like surfaces in M as in Lemma 2.6. The embedding ι identifies Si and
Sf with disjoint space-like surfaces in M ′ (that with some abuse we will still denote by Si, Sf).
Moreover Si is in the past of Sf in M ′. Since ι bijectively sends T to T ′, the past of Si in M

′

and the future of Sf in M ′ do not contain collision points and are globally hyperbolic domains.
Now the closure of the domains Ω = I+M(Si) ∩ I

−

M (Sf) and Ω′ = I+M ′(Si) ∩ I
−

M ′(Sf) are both

homeomorphic to S × [0, 1] and ι sends Ω to Ω
′
and ∂Ω onto ∂Ω′. A standard topological

argument shows that ι(Ω) = Ω′.
Finally ifMi (resp. Mf ) denotes the GHMC spacetime without collisions containing Si (resp.

Sf), we have that I−M ′(Si) (resp. I
+
M ′(Sf )) embeds in I−Mi

(Si) (resp. I
+
Mf

(Sf )).

Thus we can construct the map π′ :M ′ →Mm in such a way that

• on I+M ′(Si) ∩ I
−

M ′(Sf) we have π′ = ι−1;
• on I−M ′(Si) it coincides with the embedding in I−Mi

(Si);

• on I+M ′(Sf ) it coincides with the embedding in I+Mf
(Sf).

�
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2.5. The deformation space of maximal spacetimes. In this section we introduce the
space of deformations of a spacetime with collisions. Let us fix g, an oriented graph T in Sg×R

such that non-compact edges are properly embedded, and a family of numbers θ = (θe)e∈T1 ,
where T1 is the set of edges of T .

We consider the space Ω̃ of maximal admissible AdS-structures on Sg×R with singular locus
T such that

• every edge e is a particle of angle θe;
• the orientation of e agrees with the time-orientation induced by the AdS structure;
• every vertex of T admits a neighborhood inM which embeds in e(Σ) for some HS-surface
Σ

We denote by U(g, T, θ) the quotient space: an element of U(g, T, θ) is a singular metric with
the properties described above, up to isotopies relative to T .

There is a natural forgetful map from U(g, T, θ) to the set of AdS structures on (Sg ×R) \ T
up to isotopy. Proposition 2.8 ensures that this map is injective, so U(g, T, θ) can be identified
to a subset of the space of anti-de Sitter structures on S × R \ T . Thus U(g, T, θ) inherits
from this structure space a natural topology (see [CEG86, Section 1.5] for a discussion on the
topology of the space of (G,X)-structures on a fixed manifold).

Proposition 2.8. Let µ, ν be two singular metrics on S × R with singular locus equal to T .
Then any isometry

ψ : (S × R \ T, µ) → (S × R \ T, ν)

extends to an isometry ψ̄ : (S × R, µ) → (S × R, ν).

Proof. Let us take p ∈ T . Consider some small space-like µ-geodesic c : [0, 1] → S × R such
that c(1) = p and c([0, 1)) ∩ T = ∅. If c is small enough, we can find two points r− and r+ in
S × R \ T such that c[0, 1) ⊂ I+µ (r−) ∩ I

−
µ (r+).

Now let us consider the space-like ν-geodesic path c′(t) = ψ(c(t)) defined in [0, 1). Notice
that c′ is an inextendible geodesic path in S × R \ T .

We know that c′ is contained in I+ν (ψ(r−)) ∩ I
−
ν (ψ(r+)). Thus if S± is a space-like surface

through r±, we have that c
′ ⊂ I+ν (S−)∩I

−
ν (S+) that is a compact region in S×R. Thus c′(t) has

accumulation points as t→ 1. All these accumulation points lie in T ; if there are two different
accumulation points, then there is a segment in T accumulated by c′. This is a contradiction
since c′ is space-like whereas T is time-like.

Hence, c′(t) converges to some point in T as t→ 1. We define ĉ = limt→1 c
′(1).

To prove that ψ can be extended on T we have to check that ĉ only depends on the endpoint
p of c. In other words, if d is another space-like geodesic arc ending at p, we have to prove that
ĉ is equal to d̂ = limt→1 ψ ◦ d(t). By a standard connectedness argument, there is no loss of
generality if we assume that d is close to c. In particular we may assume that there exists the
space-like geodesic triangle ∆ with vertices c(0), d(0), p.

Consider now the µ-geodesic segment in ∆, say It, with endpoints c(t) and d(t). The image
ψ(It) is a ν-geodesic segment contained in S × R \ T . Arguing as above, we can prove that all
these segments (ψ(It))t∈[0,1) are contained in some compact region of S × R. Thus either they

converge to a point (that is the case ĉ = d̂), or they converge to some geodesic path in T with

endpoints d̂ and ĉ.
On the other hand, the ν-length of ψ(It) goes to zero as t→ 1. Thus either ψ(It) converges

to a point or it converges to a lightlike path. Since T does not contain any lightlike geodesic it
follows that ψ(It) must converge to a point. Thus d̂ = ĉ.

Finally we can define
ψ(p) = ĉ
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where c is any space-like µ-geodesic segment with endpoint equal to p.
Let us prove now that this extension is continuous. For a sequence of points pn converging

to p ∈ T we have to check that ψ(pn) → ψ(p). We can reduce to consider two cases:

• (pn) is contained in T ,
• (pn) is contained in the complement of T .

In the former case we consider a point q in the complement of T close to p. Let us consider
the µ-geodesic segment c joining q to p and the segments cn joining q to pn. Clearly for every
t ∈ (0, 1] the points cn(t) and c(t) are time related and their Lorentzian distance converges to
the distance between pn and p as t → 1. On the other hand, since ψ(cn(t)), ψ(c(t)) converges
respectively to ψ(pn), ψ(p) as t→ 1, we can conclude that

d(ψ(pn), ψ(p)) = d(pn, p)

where d denotes the Lorentzian distance along T . This equation implies that ψ(pn) → ψ(p) as
n→ +∞.

Let us suppose now that the points pn are contained in the complement of T . We can take r+
and r− such that pn ∈ I+µ (r−)∩I

−
µ (r+) for n ≥ n0. Thus the same argument used to define ψ(p)

shows that (ψ(pn)) is contained in some compact subset of S × R. To conclude it is sufficient
to prove that if ψ(pn) → x then x = ψ(p). Clearly x ∈ T . Moreover either x coincides with
ψ(p) or there is a piece-wise geodesic segment in T connecting x to ψ(p). Since the length of
this geodesic should be equal to the limit of d(pn, p), that is 0, we conclude that x = ψ(p).

Eventually we have to check that the map ψ is an isometry at p. Let us note that ψ induces
a map

ψ# : Σp → Σ′

ψ(p) ,

where Σp and Σ′

ψ(p) are respectively the link of p with respect to µ and the link of ψ(p) with

respect to ν. Simply, if c is the tangent vector of a geodesic arc c at p, we define ψ#(v) = w
where w is the tangent vector to the arc ψ ◦ c at ψ(p). Notice that ψ is an isometry around p
if and only if ψ# is a HS-isomorphism.

Clearly ψ# is bijective and is an isomorphism of HS surfaces outside the singular locus. On
the other hand, the singularities are contained in the hyperbolic regions, which are the metrics
completions of their regular parts. Hence the bijection ψ# is an extension of the isometry
between the regular parts, therefore a HS-isomorphism. �

3. The holonomy map on the space of admissible spacetimes

3.1. Holonomies of singular AdS-spacetimes around the singular locus. Let (M,T )
be a an admissible AdS structure on Sg × R. Recall that Mreg is the regular part M \ T . We
consider the holonomy

h : π1(Mreg) → SO(2, 2) .

Fix a collision point, p, of M , and let Σp be the link of the point p. Notice that the inclusion
map ι : Σp → M produces an inclusion of groups well-defined up to conjugation

ι⋆ : π1(Σp,reg) → π1(Mreg) ,

where Σp,reg is the regular part of Σp.
In this section we will investigate the behavior of the restriction of h to π1(Σp,reg).

Lemma 3.1. If γ is a meridian loop in π1(Mreg) around a particle e — a loop going once
around e — then h(γ) is a rotation of angle θe around a time-like geodesic of AdS3.

If p is a collision point, then there is x0 ∈ AdS3 which is fixed by h(γ) for any γ ∈ π1(Σp,reg).
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Proof. In the first case a regular neighborhood of γ embeds in the local model of the particle
whose holonomy is a rotation of angle θe.

In the second case, notice that a neighborhood of the point p is isometric to the AdS cone
of the HS surface Σp. So in order to prove the statement it is sufficient to check that the
holonomy of the AdS cone of a HS surface fixes a point in AdS3.

Now fix any point x0 ∈ AdS3 and identify Tx0AdS3 with the Minkowski space R2,1. In this way
the HS-sphere is identified with the space of geodesic rays starting from x̃0. If c0 : Σ̃p → HS2

is the developing map of Σp, then the developing map of the AdS cone of Σp is the map

dev : Σ̃p × R → AdS3

such that if x is not a photon of Σ̃p then dev(x, t) = c0(x)[t], where c0(x)[•] is the arc-length
parameterization of the segment c0(x).

In particular, if γ is an element of π1(Σp,reg) then the holonomy of the AdS cone around γ is
the transformation of SO(2, 2) which fixes x0 such that its differential at x0 coincides with the
holonomy of Σp (as HS-surface) around γ. �

3.2. The holonomy map. After the preliminary material in the previous section, we now
turn to the statement and proof of Theorem 3.3. We first define the notion of “admissible”
holonomy representations.

Definition 3.2. We say that a representation

h : π1(Mreg) → SO(2, 2)

is admissible if

• for any meridian loop γ in Mreg around an edge e of T h(γ) is a rotation around a
time-like geodesic in AdS3 of angle θe,

• for any vertex p ∈ T , there is a point x0 ∈ AdS3 fixed by h(γ) for any γ ∈ π1(Σp,reg).

We denote by R(g, T, θ) the space of admissible representations up to conjugacy.
By Lemma 3.1 the holonomy of any structure of U(g, T, θ) lies in R(g, T, θ). We prove now

that U(g, T, θ) is locally homeomorphic to R(g, T, θ).

Theorem 3.3. The holonomy map

U(g, T, θ) → R(g, T, θ)

is a local homeomorphism.

To prove this proposition we will use the following well-known fact about (G,X)-structures
on compact manifolds with boundary, see Theorem 1.7.1 in [CEG86]. Let us recall that a collar
of a manifold N with boundary is a neighborhood of the boundary homeomorphic to ∂N×[0, 1).

Lemma 3.4. Let N be a smooth compact manifold with boundary and let N ′ ⊂ N be a sub-
manifold such that N \N ′ is a collar of N .

• Given a (G,X)-structure M on N let hol(M) : π1(N) → G be the corresponding ho-
lonomy (that is defined up to conjugacy). Then, the holonomy map from the space of
(G,X)-structures on N to the space of representations of π1(N) into G (up to conjugacy)

M 7→ hol(M)

is an open map.
• Let M0 be a (G,X)-structure on N and denote by M ′

0 the restriction of M0 to N
′. There

is a neighborhood U of M0 in the set of (G,X)-structures on N and a neighbourhood V
of M ′

0 in the set of (G,X)-structures on N ′ such that
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(1) If M ∈ U and M ′ ∈ V share the same holonomy, there is an embedding as (G,X)-
manifolds

M ′ →֒M.

homotopic to the inclusion N ′ →֒ N .
(2) For every M ′ ∈ V there is M in U such that hol(M) = hol(M ′).

First we prove Theorem 3.3 assuming just one collision in M . Let p0 be the collision point
of M and Σ0 be the link of p0 in M (that is a HS-surface). Denote by Σ0,reg the regular part
of Σ0 and by G0 < π1(S × R \ T ) the fundamental group of Σ0,reg.

Given any representation h ∈ R, let us denote by x0 the point fixed by h(G0) and by
Lh : G0 → SO(2, 1) = SO(Tx0AdS3) the action of G0 at the tangent space of x0. Notice that,
identifying SO(Tx0AdS3) with SO(2, 1), the conjugacy class of Lh only depend of the conjugacy
class of h. Moreover the map sending h to Lh is a continuous map between R and the space
of conjugacy classes of representations of G0 into SO(2, 1).

Lemma 3.5. There is a neighborhood U0 of Σ0 in the space of HS-surfaces homeomorphic to
Σ0 such that the holonomy map on U0 is injective.

Moreover, there is a neighbourhood V of h in R(g, T, θ) such that for every h′ ∈ V there is
an HS-surface in U0, say Σ(h′), such that the holonomy of Σ(h′) is conjugate to Lh′ : G0 →
SO(2, 1).

Proof. Around each cone point qi of Σ0 take small disks

∆1(i) ⊃ ∆2(i)

Let now Σ,Σ′ be two HS-surfaces close to Σ0 sharing the same holonomy. By Lemma 3.4, up
to choosing U0 sufficiently small, there is an isometric embedding

f : (Σ \
⋃

∆2(i)) → Σ′.

Moreover, ∆1(i) equipped with the structure induced by Σ embeds in Σ′ (this because the
holonomy locally determines the HS-structure near the singular points of HS-surfaces). It is
not difficult to see that such an inclusion coincides with f on ∆1(i) \ ∆2(i) (basically this
depends on the fact that an isometry of a hyperbolic annulus into a disk containing a cone
point is unique up to rotations). Thus gluing those maps we obtain an isometry between Σ and
Σ′.

To prove the last part of the statement, let us consider for each cone point a smaller disk
∆3(i) ⊂ ∆2(i). Let U = Σ0 \

⋃
∆3(i). Clearly we can find a neighbourhood V of h such

that if h′ ∈ V then there is a structure U ′ on U close to the original one with holonomy Lh′.
On the other hand it is clear that there exists a structure, say ∆′

1(i), on ∆1(i) with cone
singularity with holonomy given by Lh′ and close to the original structure. By Lemma 3.4, if
h′ is sufficiently close to h, then ∆2(i) \∆3(i) equipped with the structure given by U ′ embeds
in ∆′

1(i). Moreover ∂∆2(i) bounds in ∆′
1(i) a disk ∆(i) containing the cone point. Thus we

can glue the ∆1(i) to U
′ to obtain the HS-surface with holonomy Lh′. �

Let C(h′) be the AdS cone on Σ(h′). By construction, the holonomy of C(h′) is conjugated
to h′|G0

.
Consider now two space-like surfaces S1, S2 in M orthogonal to the singular locus that are

disjoint and such that p0 ∈ I+(S1)∩ I
−(S2). Let M0 = I+(S1)∩ I

−(S2). Clearly S1 is the past
boundary of M0 and S2 is its future boundary.

Take the neighborhood V of h in R given by Lemma 3.5 and, for h′ ∈ V, consider the AdS
cone C(h′) constructed above. The following is a simple application of Lemma 3.4, we leave
the proof to the reader.
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Corollary 3.6. Let N0 be the AdS-manifold with boundary obtained by cutting a regular neigh-
borhood of T from M0, and let U be a collar of ∂N0 in N0. If N

′ is a slight deformation of the
AdS-structure on N0 with holonomy h′ then U , with the AdS-structure induced by N ′, embeds
in C(h′).

Now up to shrinking V we may suppose that:

• For any h′ ∈ V, there is a deformation of the AdS structure on N0, say N0(h
′), with

holonomy h′.
• If U(h′) denotes the AdS structure induced by N0(h

′) on U , then U(h′) isometrically
embeds in C(h′).

• The image of the boundary of N0(h
′) through this embedding is the frontier of a regular

neighborhood B of the singular locus in C(h′).
• The image of U(h′) is disjoint from B

The spacetime obtained by gluing B to N0(h
′), by identifying the boundary of N0(h

′) with
the frontier of B, is a spacetime with collisions with holonomy h′. Its maximal extension, say
M(h′), is a m-spacetime with holonomy h′.

To conclude we have to prove that if h′ is sufficiently close to h, then M(h′) is unique in a
neighborhood of M0.

In fact, it is sufficient to show that any given m-spacetime M ′ with holonomy h′ close to
M must contain a spacetime M ′

0 ⊂M ′ containing the collisions which embeds isometrically in
M(h′). We can assume M ′

0 close to M0 (this precisely means that M ′
0 is obtained by deforming

slightly the metric on M0).
Take small neighborhoods U2 ⊂ U1 of the singular locus in M ′

0. By Lemma 3.4 M ′
0 \ U2

embeds in M(h′). By the uniqueness of the HS-surface with holonomy h′, U1 embeds in M(h′)
as well.

It is not difficult to check that there exists a unique isometric embedding U1 ∩ U2 →M(h′),
so the embeddings U1 →֒ M(h′) and M ′

0 \ U2 →֒ M(h′) coincide on the intersection. So they
can be combined to an embedding M ′

0 →֒ M(h′).
This concludes the proof of Theorem 3.3 when only one interaction occurs. The following

lemma allows to conclude in the general case by an inductive argument.

Lemma 3.7. Let S be a space-like surface of M , and let M−, M+ be the past and the future
of S in M . Suppose that for a small deformation h′ of the holonomy h of M there are two
spacetimes with collisions M ′

−
∼= M− and M ′

+
∼= M+ such that the holonomy of M ′

± is equal to
h′|π1(M±). Then there is a spacetime M ′ close to M containing both M ′

− and M ′
+.

Proof. Let N(h) denote the maximal GH structure with particles on S × R whose holonomy
is h|π1(Sreg). There is a neighborhood of S in M which embeds in N(h). We can suppose that
S ⊂ M is sent to S × {0} through this embedding.

Now let U± be a collar of S in M± such that the image of U− in N(h) is S × [−ǫ, 0] and the
image of U+ is S × [0, ǫ] for some ǫ > 0.

If h′ is sufficiently close to h, then there is an isometric embedding of U± (considered as
subset of M ′

±) into N(h′)
i± : U± →֒ N(h′)

such that the image of U− is contained in S× [−2ǫ, ǫ/3] and contains S×{−ǫ/2}, and that the
image of U+ is contained in S × [−ǫ/3, 2ǫ] and contains S × {ǫ/2}. Thus we can glue M ′

± and
S × [−ǫ/2, ǫ/2] by identifying p ∈ U± ∩ i−1

± (S × [−ǫ/2, ǫ/2]) with its image. The spacetime we
obtain, say M ′, clearly contains M ′

− and M ′
+. �

Remark 3.8. To prove that there is a unique m-spacetime in a neighborhood of M with holo-
nomy h′, we again use an inductive argument. Suppose we can find in any small neighborhood
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ofM two m-spacetimes M ′ and M ′′ with holonomy h′. We fix a space-like surface S in M such
that both the future and the past of S, say M±, contain some collision points. Let U ⊂ V be
regular neighborhoods of S in M with space-like boundaries. We can consider collars U ′ ⊂ V ′

in M ′ and U ′′ ⊂ V ′′ in M ′′ such that

• U ′ ∪ U ′′ and V ′ ∪ V ′′ are close to U and V respectively,
• they do not contain any collision,
• they have space-like boundary.

Applying the inductive hypothesis on the connected regions of the complement of U ′ inM ′ and
U ′′ in M ′ we have that for h′ sufficiently close to h there is an isometric embedding

ψ :M ′ \ U ′ →M ′′

such that ψ(∂U ′) is contained in V ′′.
Now consider the isometric embeddings

u′ : V ′ → N(h′) u′′ : V ′′ → N(h′)

where N(h′) is the GHMC structure on S × R whose holonomy is h′|π1(Sreg). Notice that the
maps u′ and u′′ ◦ ψ provide two isometric embeddings

V ′ \ U ′ → N(h′)

so they must coincide (we are using the fact that the inclusion of a GH spacetime with particles
in its maximal extension is uniquely determined).

Finally we can extend ψ on the whole M ′ by setting on V ′

ψ = (u′′)−1 ◦ u′ .

4. The left and right metrics on space-like slices of good spacetimes

The main goal of this section is to construct, for each space-like slice containing no particle
collision, two hyperbolic metrics with cone singularities on a surface. It is the sequence of
those pairs of hyperbolic metrics (or, more precisely, the graph of those pairs of hyperbolic
metrics) which provide a complete description of a spacetime with interacting particles, as seen
in Theorem 6.1.

4.1. The left and right connections. The constructions of the left and right hyperbolic
metrics, below, can be understood in a fairly simple manner through two flat linear connections
on the tangent bundle of an AdS 3-manifold. In this first part we consider an AdS manifold
M , which could for instance be the regular part of an AdS manifold with particles.

Definition 4.1. Let M be an AdS manifold and ∇ be its Levi-Civita connection. On M we
consider two linear connections defined by

Dl
vu = ∇vu+ u× v , Dr

vu = ∇vu− u× v ,

where × is the cross-product in AdS3 — it can be defined by (v × y)∗ = ∗(v∗ ∧ y∗), where v∗ is
the 1-form dual to v for the AdS metric and ∗ is the Hodge star operator.

Lemma 4.2. Dl and Dr are flat connections compatible with the AdS-metric.

Proof. The fact that Dl and Dr are compatible with the metric easily follows from the property
of the cross-product.

Since the cross product is flat with respect to the Levi-Civita connection, there is a simple
relation between the curvature Rl of Dl to the curvature R of ∇, that can be proved by a direct
computation. In fact we have

Rl(v, w)u = R(v, w)u+ v × (w × u)− w × (v × u) .
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A basic point is that the Riemann curvature tensor of a Lorentzian space form of constant
curvature K can be easily expressed in terms of the cross product. Indeed if v, w, u are tangent
vectors in M we have

(1) R(v, w)u = K(v × w)× u .

So we get

Rl(v, w)u = u× (v × w) + v × (w × u) + w × (u× v) = 0

where the last identity holds for the Jacobi identity for the cross product. �

Remark 4.3. For a 3-dimensional Riemannian space form, formula (1) holds with the opposite
sign. For this reason the construction above applied to the Riemannian setting produces two
flat connections on the unit tangent bundle of a 3-dimensional spherical manifold.

This phenomenon is closely related to the fact that the isometry group of the three dimen-
sional sphere S3 (as well as the isometry group of AdS3) has a natural product structure.

Definition 4.4. We call T 1,tM the bundle of positively directed unit time-like vectors on M .

Notice that if V is a unit time-like vector field, then Dl
xV and Dr

xV are orthogonal to V at
any point. In particular they belong to the tangent space of T 1,tM .

In this section we want to relate the holonomies of connections Dl and Dr — that are
representations π1(M) → SO0(2, 1) — to the holonomy of the AdS-structure on M , that is a
representation π1(M) → SO(2, 2).

First we prove that the holonomy of the model space AdS3 is trivial.

Lemma 4.5. The holonomy of Dl and Dr on AdS3 is trivial.

Proof. Since the fundamental group of AdS3 is generated by the geodesic curve γ(t) =
(cos t, sin t, 0, 0), it is sufficient to compute the linear maps

hl(γ) : Tγ(0)AdS3 ∋ v 7→ V l(2π) ∈ Tγ(0)AdS3

where V l(t) is the Dl-parallel field along γ with initial condition V l(0) = v.
If v = γ̇(0), it is easy to see that V l(t) = γ̇(t), so hl(γ)(v) = v.
If v is orthogonal to γ̇, denote by V the ∇-parallel field extending v. Then we easily see that

V l(t) = cos(t)V (t) − sin(t)V (t)× γ̇ .

Since V (2π) = v, we obtain that hl(γ)(v) = v.
By linearity we conclude that hl(γ) is the identity. Similarly we can prove that hr(γ) is the

identity. �

Let us fix a base point x0 ∈ AdS3 and consider the maps

τ l(x), τ r(x) : Tx0AdS3 → TxAdS3

obtained by using parallel transport with respect to Dl and Dr along any curve joining x0 to
x. By Lemma 4.5, these maps are well-defined.

We identify once for all Tx0AdS3 with Minkowski space, and O(Tx0AdS3) with O(2, 1).
Given any isometry g ∈ SO(2, 2), we can consider the linear transformations of Tx0M ob-

tained by composing the differential map dg(x0) : Tx0AdS3 → Tg(x0)AdS3 by the inverse of the
parallel transports τl(g(x0)), τr(g(x0)) : Tx0AdS3 → Tg(x0)AdS3. Namely

gl = τl(g(x0))
−1 ◦ dg(x0) , gr = τr(g(x0))

−1 ◦ dg(x0) .

Notice that gl and gr are elements of SO0(2, 1).
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Lemma 4.6. The map

(2) I : SO0(2, 2) ∋ g 7→ (gl, gr) ∈ SO0(2, 1)× SO0(2, 1)

is a surjective homomorphism and its kernel is the Z/2Z-subgroup generated by the antipodal
map.

Proof. Notice that τl(hg(x0)) = τ ′l ◦ τl(h(x0)) where τ ′l is the parallel transport Th(x0)M →
Thg(x0)M . Since Dl is preserved by isometries of AdS3 we deduce that τ

′
l = dh(g(x0))◦τl(g(x0))◦

(dh(x0))
−1. From these formulas we easily get that I is a homomorphism.

Given a Killing vector field X ∈ so(2, 2) we have that

dIid(X) = (DlX(x0), D
rX(x0)) .

(Notice that DlX and DrX are skew-symmetric operators of Tx0M .) This formula easily shows
that dIid is an isomorphism. We conclude that I is a covering map. Since the center of SO0(2, 1)
is trivial, ker I is the center of SO0(2, 2), that is, the group generated by the antipodal map. �

Remark 4.7. Mess [Mes07] described this map SO0(2, 2) → PSL(2,R)×PSL(2,R) in a different
way, using the double ruling of the projective quadric C = {[x] ∈ P(R2,2)|〈x, x〉 = 0}.

Lemma 4.8. Through the identification between SO0(2, 2) with SO0(2, 1)×SO0(2, 1), the sta-
bilizer in SO0(2, 2) of a point x ∈ AdS3 corresponds to a subgroup of SO0(2, 1) × SO0(2, 1)
conjugated to the diagonal subgroup.

Proof. It is sufficient to prove the statement in the case where x = x0. In that case it is clear
by definition that if g fixes x0, then gl = gr = dg(x0)

−1. So the stabilizer of x0 is contained in
the diagonal subgroup. Since those groups have the same dimension, they must coincide. �

Let us fix p0 ∈M . For any loop γ centered at p0 let us denote by hl(γ), hr(γ) ∈ SO0(Tx0M) ∼=
SO0(2, 1) the holonomy along γ−1 with respect to Dl and Dr. The reason why we consider the
parallel transport along the inverse of γ is that in this way h•(γδ) = h•(γ)h•(δ).

Since Dl and Dr are flat, hl(γ), hr(γ) only depend on the homotopy class of γ. In particular
two holonomy representations hl, hr : π1(M) → SO0(2, 1) are associated to Dl and Dr. Though
the construction depends on the choice of a point p0, those representations are well-defined up
to conjugation.

Lemma 4.9. Up to conjugation we have that

I ◦ h = (hl, hr) .

Proof. Let us fix a universal covering map π : M̃ → M , a base point p0 ∈ M , and a point
p̃0 ∈ π−1(p0). Without loss of generality we may suppose that the developing map sends p̃0 to
x0.

Let γ : [0, 1] → M be a closed loop in M such that γ(0) = γ(1) = p0. Consider the lift γ of
γ to M̃ with starting point p̃0 and denote by L = L(γ) the covering automorphism such that
L(p̃0) = γ(1). Since π ◦ L = π we have

(3) dπ ◦ dL = dπ .
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Let g = h(γ) and τ̄l be the D
l-parallel transport along γ−1 we have the following commutative

diagram

(4)

Tp0M Tp0M
hl(γ)
−−−→ Tp0M

dπ

x dπ

x dπ

x

Tp̃0M̃
dL

−−−→ TL(p̃0)M̃
τ̄l−−−→ Tp̃0M̃

d(dev)

y d(dev)

y d(dev)

y

Tx0AdS3
dg

−−−→ Tg(x0)AdS3
τl(g(x0))

−1

−−−−−−→ Tx0AdS3

.

Indeed, the commutativity of the squares on the upper row is easy to check. The commuta-
tivity of the second square of the second lower row relies on the fact that dev sends Dl-parallel
vector field on M̃ to Dl-parallel vector field on AdS3. Finally the commutativity of the first
square of the lower row follows from the fact that, by definition of holonomy, g ◦ dev = dev ◦L.

By diagram (4), identifying Tp0M with Tx0AdS3 through the map dπ(p̃0) ◦ (d(dev)(p̃0))
−1 :

Tx0AdS3 → Tp0M , we have that hl(γ) = τl(g(x0))
−1 ◦ dg(x0) = gl and analogously hr(γ) =

τ(g(x0))
−1 ◦ dg(x0) = gr. �

4.2. The left and right metrics. Every smooth curve V (t) = (x(t), v(t)) in TM can be
regarded as a vector field along the curve x(t) = π(V (t)), so we can consider its covariant
derivative with respect to Dl and Dr.

There is a splitting of T (TM) associated with the connections Dl and Dr. Namely we have

T (TM) = T V (TM)⊕H l = T V (TM)⊕Hr

where

• T V (TM) is the vertical tangent space, that is the tangent space to the fiber (it is
independent of the connection),

• H l and Hr are the horizontal spaces (depending on the connection): a vector ξ ∈
T(p0,v0)(TM) lies in H l (resp. Hr) if and only if there exists a Dl-parallel (resp. Dr-

parallel) curve V (t) = (x(t), v(t)) with V̇ (0) = ξ.

Each of these splittings provides a linear projection

P l, P r : T(p,v)(TM) → T V(p,v)(TM) = TpM

and we easily see that P l(ξ) = DlV
dt

(0) whereas P r(ξ) = DrV
dt

(0) where V (t) = (x(t), v(t)) is any

curve in TM such that V̇ (0) = ξ.
Notice that if (x, v) ∈ T 1,tM (cf. Definition 4.4) and ξ ∈ T(x,v)(T

1,tM), we can construct the
curve V (t) = (x(t), v(t)) so that 〈v(t), v(t)〉 = −1. Since Dl and Dr are compatible with the
metric, we get that P l(ξ) and P r(ξ) are orthogonal to v in TxM , so either they are 0 or they
are space-like.

Definition 4.10. We callMl andMr the two degenerate metrics (everywhere of rank 2) defined
on T 1,tM as follows:

Ml(ξ) = ||P l(ξ)||2 , Mr(ξ) = ||P r(ξ)||2 .

By construction, Ml and Mr are symmetric quadratic forms on the tangent space of T 1,tM ,
and they are semi-positive, of rank 2 at every point.
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We will derive a more concrete expressions of metrics Ml and Mr that will be useful in the
sequel. We use a natural identification based on the Levi-Civita connection ∇ of M :

∀(x, v) ∈ T 1,tM , T(x,v)(T
1,tM) ≃ TxM × v⊥ ⊂ TxM × TxM .

In this identification, given v′ ∈ v⊥, the vector (0, v′), considered as a vector in T (T 1,tM),
corresponds to a “vertical” vector, fixing x and moving v according to v′. And, given x′ ∈ TxM ,
the vector (x′, 0), considered as a vector in T (T 1,tM), corresponds to a “horizontal” vector,
moving x according to x′ while doing a parallel transport of v (for the connection ∇).

Notice that P l(0, v′) = P r(0, v′) = v′: indeed by definition there exists a curve V (t) =
(x, v(t)) in TxM whose derivative in 0 is (0, v′), and we easily see that its covariant derivative
(for any connection), coincides with v′.

On the other hand, given a vector (x′, 0) in T(x,v)TM , it can be extended to a curve V (t) =
(x(t), v(t)) which is ∇-parallel and such that ẋ(0) = x′. So we have

Dl

dt
V (t) =

DV

dt
+ v(t)× ẋ(t) ,

and we conclude that P l(x′, 0) = v× x′. Analogously P r(x′, 0) = −v× x′. So we conclude that

Ml((x
′, v′), (x′, v′)) = ‖v′ + v × x′‖2 , Mr((x

′, v′), (x′, v′)) = ‖v′ − v × x′‖2 .

Lemma 4.11. With those definitions:

• Ml and Mr vanish on the integral curves of the geodesic flow of M .
• Ml and Mr are invariant under the geodesic flow of M .

Proof. We denote by φ• : TM → TM the geodesic flow on TM . Let us notice that the geodesic
equation of the connection ∇ coincides with the geodesic equation of Dl and Dr. Thus φ• can
be regarded as the geodesic flow of the connection Dl (Dr) as well.

Since the orbits of the geodesic flow are tangent to the horizontal space H l (resp. Hr), Ml

and Mr vanish on the direction tangent to the geodesic flow.
Given a point (x, v) ∈ TM and ξ ∈ T (TM), let us consider any curve V (t) = (x(t), v(t))

such that ξ = V̇ (0). Putting W (s, t) = φs(V (t)) = (y(s, t), w(s, t)), by definition we have that

y(•, t) is a geodesic for any fixed t and that ∂y

∂s
(s, t) = w(s, t). In particular DlW

ds
= 0.

By definition,
d

ds
Ml(dφs(ξ)) =

d

ds

〈
DW

dt
,
DW

dt

〉
(s, 0) .

On the other hand, since Dl is flat we have

d

ds

〈
DW

dt
,
DW

dt

〉
= 2

〈
D

dt

DW

ds
,
DW

dt

〉
= 0

and this shows that Ml(dφs(ξ)) is constant. �

Definition 4.12. We denote by G(M) the space of time-like maximal geodesics in M , and by
ml and mr the degenerate metrics on G(M) induced by Ml and Mr, respectively.

Lemma 4.13. (G(M), ml ⊕mr) is locally isometric to H2 ×H2.

Proof. Since the statement is local, we may suppose that M is simply connected. Let us fix
a point x0 ∈ M . Notice that the set of time-like unit-vector at x0, say T

1,t
x0
M , is a space-like

surface in Tx0M which is isometric to the hyperbolic plane. We isometrically identify T 1,t
x0
M

with H2.
Let us consider the maps φl, φr : T 1,tM → T 1,t

x0
M = H2 defined by using the parallel transport

for Dl and Dr.
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We claim that Ml = (φl)∗(gH) and Mr = (φr)∗(gH).
To check the claim, let V (t) = (x(t), v(t)) for t ∈ (−ǫ, ǫ) be any curve in TM with V (0) =

(x, v) and V̇ (0) = ξ. There is a homotopy σ(t, s) : (−ǫ, ǫ)× [0, 1] →M such that σ(t, 0) = x(t)

and σ(t, 1) = x0. The field V can be uniquely extended to a field W on σ so that DlW
ds

= 0.

By definition we have that W (t, 1) = φl(V (t)), so dφl(ξ) = DlW
dt

(0, 1). In particular we have

〈
dφl(ξ), dφl(ξ)

〉
=

〈
DlW

dt
(0, 1),

DlW

dt
(0, 1)

〉
.

On the other hand, since Dl is flat we have

d

ds

〈
DlW

dt
,
DlW

dt

〉
= 2

〈
Dl

dt

DlW

ds
,
DlW

dt

〉
= 0 ,

so we deduce that

〈dφ(ξ), dφ(ξ)〉 =

〈
DlW

dt
(0, 0),

DlW

dt
(0, 0)

〉
=

〈
DlV

dt
(0),

DlV

dt
(0)

〉
= ||P l(ξ)||2 .

We can obtain in the same way that the pull-back of the hyperbolic metric through φr isM r.
In particular, considering the map φ(v) = (φl(v), φr(v)) ∈ H2 × H2, Ml ⊕Mr is the pull-back
of the sum of hyperbolic metrics through φ.

Notice that the orbits of the geodesic flow are horizontal for both Dl and Dr (this because
geodesics of ∇ coincide with geodesics of Dl and Dr), so we deduce that φ is constant on the
orbits of geodesic flow, so it induces a map

φ̄ : G(M) → H2 ×H2

and we have that φ̄∗(gH ⊕ gH) = ml ⊕mr.
In order to conclude we should prove that φ̄ is a local diffeomorphism. This is equivalent to

showing that ml⊕mr is non-degenerate. Since the tangent space of G(M) is the quotient of the
tangent space of T 1,tM along the line tangent to the orbit of the geodesic flow, it is sufficient
to prove that vectors ξ ∈ T(x,v)(T

1,tM) such that Ml(ξ) = Mr(ξ) = 0 are tangent to the orbit
of the geodesic flow.

Taking such a ξ = (x′, v′), we deduce that v′ + v × x′ = v′ − v × x′ = 0, so v′ = 0 and
v× x′ = 0. Thus ξ = (x′, 0) with x′ parallel to v, and this is the condition to be tangent to the
geodesic flow. �

Remark 4.14. The proof of Lemma 4.13 shows that in the general case the developing map of
ml ⊕mr is the map

φ̄ : G̃(M) = G(M̃) → H2 ×H2

described above. Its holonomy is given by the pairs of representations (hl, hr) (up to the
identification of π1(G(M)) with π1(M)).

Note that there is another possible way to obtain the same hyperbolic metrics ml and mr,
using the identification of H2 × H2 with PSL(2,R) × PSL(2,R)/O(2) × O(2). We do not
elaborate on this point here since it appears more convenient to use local considerations.

4.3. Transverse vector fields and associated hyperbolic metrics. The construction of
the left and right hyperbolic surfaces associated to an AdS 3-manifold is based on the use of
a special class of surfaces, endowed with a unit time-like vector field behaving well enough, in
particular with respect to the singularities.

Let us first consider the case without particle:
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Definition 4.15. Let M be any smooth AdS manifold. Let S ⊂M be a space-like surface, and
let V be a field of time-like unit vectors defined along S. It is transverse if for all x ∈ S, the
maps v 7→ Dl

vV and v 7→ Dr
vV have rank 2.

It is not essential to suppose that S is space-like, and the weaker topological assumption that
S is isotopic in M to a space-like surface would be sufficient. The definition is restricted to
space-like surface for simplicity.

Definition 4.16. We still assume that M is a regular AdS spacetime. Let S ⊂ M be a space-
like surface, and let V be a transverse vector field on S. Let δ : S → G(M) be the map sending
a point x ∈ S to the time-like geodesic parallel to V at x. We call µl := δ∗ml and µr := δ∗mr.

Notice that the field V can be regarded as a map S → T 1,tM , and we have µl = V ∗(Ml) and
µr = V ∗(Mr). In particular we easily see that

µl(v, v) = ||Dl
vV ||2 , µr(v, v) = ||Dr

vV ||
2 .

So the metrics µl and µr are not degenerate.
If τl, τr : T

1,tM̃ → T 1,t
x0
M̃ = H2 are the maps obtained by parallel transport for Dl and Dr

on the universal covering, as in Lemma 4.13, we have that the developing map of µl is the map
devl(x) = τl(Ṽ (x)) where Ṽ is the lift of V on S̃ ⊂ M̃ . Analogously devr(x) = τr(Ṽ (x)) is a
developing map for µr.

Now consider the case where M contains some particles, and denote by Mreg the smooth
part of M . Let S be a space-like surface meeting the particles orthogonally and let V be a
transverse vector field on Sreg =Mreg∩S. The field V defines two hyperbolic metrics µl and µr
on Sreg with holonomy hl and hr respectively. However in general the behavior of the metrics
around the particles can be very degenerate. We say that V is a transverse vector field on S
if it satisfies the following conditions, which ensure that µl and µr are hyperbolic metrics with
cone singularities around the particles.

Definition 4.17. Let T be a particle in M and p be the intersection point of T with S. We
consider a neighborhood W of p that is obtained by glueing a wedge Ŵ ⊂ AdS3 of angle θ as
explained in [BBS11, 3.7.1]. The intersection ∆ = S ∩W corresponds to a surface ∆̂ on Ŵ ,

with p corresponding to a point p̂ on ∆̂. The surface S is smooth around p if ∆̂ can be extended
to a smooth surface in a neighborhood of p̂.

The vector field V is transverse around a particle T if the following conditions are satisfied:

• V extends to a unit vector field in p tangent to T .
• The induced vector field V̂ on Ŵ extends to a smooth vector field in a neighborhood of
Ŵ in AdS3,

• The rank of DlV̂ and DrV̂ at p̂ is 2.

First let us exhibit a large class of vector fields that satisfy the conditions of this definition.

Lemma 4.18. If the cone angle around the particle is θ ∈ (0, 2π), θ 6= π and S is a smooth sur-
face orthogonal to the particle, its unit normal vector field satisfies the conditions of Definition
4.17 at p.

Proof. The first two conditions are easily verified. Let us check the third condition.
Using the fact that V̂ is the pull-back of a vector field on W , at p̂ we have that

∇R(v)V̂ = R∇vV̂ ,

where R : Tp̂AdS3 → Tp̂AdS3 is the rotation of angle θ with axis the line tangent to T , and
v is a vector orthogonal to T and tangent to the boundary of W . If θ 6= π this implies that
∇V̂ (p̂) = λI + µJ where J is the rotation of π/2 around the line tangent to T .



22 COLLISIONS OF PARTICLES

On the other hand, if V is the normal field of S, we have that ∇V̂ is a self-adjoint operator
on TS. Thus we have that the skew-symmetric part of ∇V̂ must vanishes at p. It follows that
∇V̂ (p̂) = λI.

In particular, since the transformation v 7→ V̂ (p)× v coincides with J , we deduce that

DlV̂ (p̂) = λI + J , DrV̂ (p̂) = λI − J ,

and the third condition in the definition follows. �

Remark 4.19. When the cone angle is π, the same conclusion follows provided that S is convex
around the particle.

Proposition 4.20. Let M be a space-time with particles and S be a closed smooth surface
orthogonal to the particles. If V is a transverse field on S, then µl and µr are hyperbolic
metrics with cone singularity. Moreover if p is the intersection point of S with a particle of
angle θ, then p is a cone point for both µl and µr of the same angle.

Proof. The metrics µl and µr are defined on the smooth part Sreg = S∩Mreg and are hyperbolic
by Lemma 4.13.

Since V is smooth at any particle, it is easy to check that DlV and DrV are uniformly
bounded operators of TSreg. This implies that µ• is bi-Lipschitz to the first fundamental form.
In particular the completion of (Sreg, µ•) is canonically identified with S.

Let p be the intersection point of S with a particle. A neighborhoodW of p inM is obtained
by glueing the boundary of a wedge Ŵ of angle θ in AdS3. Let ∆ = S ∩ W and ∆̂ the
corresponding surface in Ŵ .

By hypothesis, ∆̂ is a sector of a smooth surface Σ around p̂ in AdS3 orthogonal to the edge
of Ŵ , and V̂ can be extended to a smooth vector field on Σ.

In particular the metrics µ̂• on ∆̂ extend to smooth hyperbolic metrics on Σ and (∆, µ•) is

obtained by gluing the boundary of (∆̂, µ̂•) by a rotation around p̂.

Let us consider in Tp̂AdS3 the sector P of vectors tangent to curves contained in ∆̂. It is
clearly a sector of angle θ for the AdS metric. If we show that P is a sector of angle θ also for
µ•, then the result will easily follows.

Notice that if θ = π, then P is a half-plane, so the angle is π for any metric. If θ 6= π, as in
Lemma 4.18, we have thatD•V is a conformal transformation at p̂. Since µl(•, •) = 〈Dl

•V,D
l
•V 〉

we see that the angle of P with respect to µl is still θ (and analogously for µr). �

Note. The reason this paper is limited to manifolds with massive particles — rather than more
generally with interacting singularities as in [BBS11] — is that we do not at the moment
have good analogs of those surfaces with transverse vector fields when other singularities, e.g.
tachyons, are present.

4.4. A special case: good surfaces. The previous construction admits a simple special case,
when the time-like vector field is orthogonal to the surface (which then has to be space-like).

Definition 4.21. Let M be an AdS manifold with interacting particles. Let S be a smooth
space-like surface. S is a good surface if:

• it does not contain any interaction point,
• it is orthogonal to the particles,
• the curvature of the induced metric is negative,
• the intersections of S with the particles of angle π are locally convex.
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W0

W1

v1

w

v0

ṽ1(p0)

Figure 2. A simple example with no transverse vector field.

Note that, given a good surface S, one can consider the equidistant surfaces Sr at distance
r on both side. For r small enough (for instance, if S has principal curvature at most 1, when
r ∈ (−π/4, π/4)), Sr is a smooth surface, and it is also good. So from one good surface one
gets a foliation of a neighborhood by good surfaces.

The key property of good surfaces is that their unit normal vector field is a transverse vector
field, according to the definition given above. This simplifies the picture since the left and right
metrics are defined only in terms of the surface, without reference to a vector field. However
the construction of a good surface seems to be quite delicate in some cases, so that working
with a more general surface along with a transverse vector field is simpler.

Lemma 4.22. Let S be a good surface, let u be the unit normal vector field on S, then u is a
transverse vector field.

Proof. Let x ∈ Sreg and let v ∈ TxS. By definition,

Dl
vu = ∇vu+ u× v = −Bv + Jv ,

Dr
vu = ∇vu− u× v = −Bv − Jv ,

where B is the shape operator of S and J is the complex structure of the induced metric on
S. If S is a good surface then its induced metric has curvature K < 0. But det(−B ± J) =
det(B) + 1 = −K, so that Dl

vu and Dr
vu never vanish for v 6= 0. This means precisely that u

is a transverse vector field along Sreg.
Now the lemma follows from Lemma 4.18 and Remark 4.19. �

Example. Let s0 be a space-like segment in AdS3 of length l > 0. Let d0, d1 be disjoint time-like
lines containing the endpoints of s0 and orthogonal to s0, chosen so that the angle between the
(time-like) plane P0 containing s0, d0 and the (time-like) plane P1 containing s0 and d1 is equal
to some θ ∈ R. Let W0 (resp. W1) be wedges with axis d0 (resp. d1) not intersecting s0 or d1
(resp d0) (see Figure 2).

LetMθ be the space obtained from AdS3\W0∪W1 by gluing isometrically the two half-planes
in the boundary of W0 (resp. W1), and let Mex :=Mθ for θ = l. We will see that Mex does not
contain any good surface, or even any surface with a transverse vector field.

Let x0 be the end-point of s0 contained in d0. Let us identify SO0(2, 1) with the isometry
group of Tx0AdS3. By definition the holonomy g0 of a loop of M around d0 is a rotation of axis
d0. So (g0)l = (g0)r are elliptic transformations with fixed point the vector v0 tangent to d0
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On the other hand, if g1 is the holonomy of a loop around d1, (g1)l and (g1)r are elliptic
transformations with fixed point the vectors τl(v1) and τr(v1) respectively, where v1 is the
direction tangent to d1 at the end-point p1 ∈ d1 ∩ s0. Now if ṽ1 is the ∇-parallel field on s0
extending v1 on s0 and w is the unit vector field tangent to s0 and pointing to p0 we have by
our assumption

v0 = cosh(θ)ṽ1(p0)± sinh(θ)w × ṽ1(p0)

(where the sign ± depends on the way d1 is turned with respect to d0).
On the other hand, the Dl and Dr-parallel extensions of v1 along s0 are respectively

τl(v1)(p) = cosh(s)ṽ1(p) + sinh(s)w × ṽ1(p) , τl(v1)(p) = cosh(s)ṽ1(p) + sinh(s)w × ṽ1(p)

where s is the distance on s0 between p and p1.
In particular, assuming θ = l, either τl(v1) or τr(v1) coincides with v0. This implies that either

the left or the right holonomy is an elementary representation, so it cannot be the holonomy of
a hyperbolic disk with two cone singularities.

Notice that if θ < l, Mθ does contain a space-like surface with a transverse vector field (we
leave the construction to the interested reader) but with a left hyperbolic metric, say µl(θ),
which has two cone singularities which “collide” as θ → l. (This can be seen easily by taking a
surface which contains s0.) IfMex admitted a surface with a transverse vector field, it could have
only one cone singularity (as it is seen by considering the limit Mθ → Mex), this is impossible.

Note that Mex is obviously not globally hyperbolic, and it contains no closed space-like
surface, it was chosen for its simplicity.

4.5. Changing the transverse vector field and the space-like slice. In this section we
will consider the same framework as in the previous section. In particular we fix an AdS
manifold M with particles, a closed space-like surface in M and a transverse vector field V on
S. We will investigate how the metrics µ• change when deforming the surface S and the vector
field. The first basic result is that the class of isotopy of µ• is independent of S and V . More
precisely, if S and S ′ are two different surfaces in M we will prove that there exist isometries
φ• : (S, µ•) → (S ′, µ′

•) such that the induced map φ∗ : π1(Sreg) → π1(S
′
reg) makes the following

diagram commutative (up to conjugation)

π1(Sreg)
i∗−−−→ π1(Mreg)

φ∗

y Id

y

π1(S
′
reg)

i′∗−−−→ π1(Mreg)

.

Notice that the commutativity of the diagram determines the isotopy class of φ. More geomet-
rically φ is isotopic to any map S → S ′ obtained by following the flow of any time-like field
tangent to the particles.

Lemma 4.23. Given S, µl and µr do not depend (up to isotopy) on the choice of the transverse
vector field V . Moreover, µl and µr do not change (again up to isotopy) if S is replaced by
another surfaces isotopic to it.

The proof uses a basic statement on hyperbolic surfaces with cone singularities. Although
this result might be well known, we provide a proof for completeness.

Lemma 4.24. A closed hyperbolic surface with cone singularities of angle less than 2π is
uniquely determined by its holonomy.

Let S be a closed surface with marked points x1, · · · , xn, let θ1, · · · , θn ∈ (0, 2π), and let
µ0, µ1 be two hyperbolic metrics on S with cone singularities of angles θi (resp. θ

′
i) on the xi,
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1 ≤ i ≤ n. We suppose that µ0 and µ1 have the same holonomy, and will prove that µ0 is
isotopic to µ1.

The holonomy of a short curve around a singular point xi is a rotation of angle the cone
angle at xi. Since µ0 and µ1 have the same holonomy at xi, we see already that θi = θ′i for all
1 ≤ i ≤ n.

Sublemma 4.25. There exists a triangulation T0 of S with vertices equal to the xi, with as
edges segments that are geodesic for µ0.

Proof. A basic point on metrics with cone singularity with angle less than 2π is that any two
cone points are connected by a minimizing geodesic which does not pass through any other
cone singularity. Given a curve γ0 between two singular points xi and xj , there is a unique
curve γ1 between xi and xj which can be deformed to γ0 in the complement of the xk, and
which has minimal length among all such curves. However γ1 can go through some of the xk.

It follows that there is a graph Γ embedded in S with vertices xi having edges segments with
are geodesic for µ0.

Cutting S along Γ, we get a surface Ŝ with piecewise geodesic boundary such that the
total angle at any vertex of the boundary is in (0, 2π). Any loop c in Ŝ centered at some

vertex of ∂Ŝ can be deformed to a geodesic curve (that may possibly contain some segment

of the boundary). In particular, cutting Ŝ along geodesic curves which are not isotopic to the
boundary, we eventually get a decomposition of S in hyperbolic disks D1, . . . , Dn which have
piecewise geodesic boundary, such that vertices of ∂Di correspond to cone points of S.

To conclude the proof it is sufficient to show that each Di admits a geodesic triangulation
with vertices corresponding to the vertices of its boundary. We use an inductive argument on
the number of vertices of ∂Di.

Take any vertex p of Di and consider the set A of end-points of maximal geodesic segments
embedded in Di starting at p. By maximality, A is a subset of ∂Di. We distinguish two cases.
First we suppose that A contains a vertex q of ∂Di which is not adjacent to p. In this case,
cutting Di along the maximal segment joining p to q, we decompose Di into 2 disks with less
vertices. In the other case, any segment starting from p and contained in the interior of Di

must meet a single edge of Di. This means that there exists a geodesic triangle in Di with a
vertex at p whose edges contains the edges of ∂Di adjacent to p. In this case there is a segment
in the interior of Di joining the vertices adjacent to p. Thus we can cut Di into a triangle T ′

contained in T and another disk D′ with less vertices. �

Note that the argument given in the previous proof for the existence of a triangulation could
be replaced by another argument, based on Voronoi diagrams, which is somewhat simpler in
the setting considered here. The reason why we favored the slightly more involved argument
used here is that we will repeat the same argument below in the slightly different setting of
surfaces with (convex) boundary. The type of argument used here works directly for surfaces
with boundary, while the argument based on Voronoi diagrams is less directly applicable there.

Proof of Lemma 4.24. We define a 3-disk in S as a disk in S containing no marked point in
its interior and exactly three marked points in its boundary. Those disks are considered up to
homotopy of S fixing the marked points xi. Let D be such a disk, containing in its boundary
the marked points xi, xj, xk. Considering the restriction to D of the developing map of the
regular part of (S, µ0) we associate to xi, xj and xk a triple (x′i, x

′
j , x

′
k) of points in H2, defined

up to global isometry of H2, as well as a disk D′ containing x′i, x
′
j and x

′

k in its boundary (D′

is defined up to homotopy in H2 fixing x′i, x
′
j and x

′
k).

Notice that D′ and (x′i, x
′
j , x

′
k) are uniquely determined by the holonomy of µ0 only, because

the holonomy determines the cone angles at x′i, x
′
j , x

′
k (through the holonomies of loops around
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these points) and the distance between x′i and x′j (through the trace of the holonomy of the
boundary of a small neighborhood of the segment of ∂D between xi and xj) and similarly for
x′j and x

′
k and for x′k and x′i.

We say that the 4-tuple (D′, x′i, x
′
j , x

′
k) is realizable if D′ can be deformed to a triangle

(with geodesic boundary) with vertices x′i, x
′
j and x

′
k, without displacing x

′
i, x

′
j and x

′
k. Clearly

if (xi, xj, xk) are the vertices of a triangle D of a geodesic triangulation T of (S, µ0), then
(D′, x′i, x

′
j , x

′
k) is realizable. But conversely, if, for any face D of a triangulation T with vertices

xi, xj and xk, (D
′, x′i, x

′
j, x

′
k) is realizable, then considering the developing map of the metric

shows that T can be realized as a geodesic triangulation.
Since the condition for a 3-disk to be realizable depends only on the holonomy, the geodesic

triangulation T0 of (S, µ0) constructed in Sublemma 4.25 also corresponds to a geodesic trian-
gulation of (S, µ1). Moreover the length of the edges is the same for the two metrics, because
we have seen that the length of an edge is determined by the holonomy. So µ1 is isotopic to
µ0. �

Proof of Lemma 4.23. For the first point consider another transverse vector field V ′ on S, and
let µ′

l, µ
′
r be the hyperbolic metrics defined on S by the choice of V ′ as a transverse vector

field. Let γ be a closed curve on the complement of the singular points in S. The holonomy of
µ′
l (resp. µ

′
r) on γ is equal to the holonomy of Dl (resp. Dr) acting on the hyperbolic plane,

identified with the space of oriented time-like unit vectors at a point of S. So µl and µ
′
l (resp.

µr and µ
′
r) have the same holonomy, so that they are isotopic by Lemma 4.24.

The same argument can be used to prove the second part of the lemma. Let γ1 be a closed
curve on S1 which does not intersect the singular set of M , and let γ2 be a closed curve
on S2 which is isotopic to γ1 in the regular set of M . The holonomy of M on γ1, h(γ1), is
equal to the holonomy of M on γ2, h(γ2). But h = (hl, hr) by Lemma 4.9, and hl, hr are the
holonomy representations of the left and right hyperbolic metrics on S1 and on S2 by Lemma
4.9. Therefore, (S1, µl) has the same holonomy of (S2, µl), and (S1, µr) has the same holonomy
as (S2, µr). The result therefore follows by Lemma 4.24. �

Note that a weaker version of this proposition is proved as [KS07, Lemma 5.16] by a different
argument. The notations µl, µr used here are the same as in [BS09], while the same metrics
appeared in [KS07] under the notations I∗±. Those metrics already appeared, although implicitly
only, in Mess’ paper [Mes07]. As we have mentioned in Section 1.2, this paper considers
globally hyperbolic AdS manifolds, which are the quotient of a maximal convex subset Ω of
AdS3 by a surface group Γ acting by isometries on Ω. The identification of SO0(2, 2) with
PSL(2,R)× PSL(2,R) then determines two representations of Γ in PSL(2,R) with maximal
Euler number, so that they define hyperbolic metrics. It is proved in [KS07] that those two
hyperbolic metrics correspond precisely to the left and right metrics considered here.

Remark 4.26. In general the isometries φl : (S, µl) → (S ′, µ′
l) and φr : (S, µr) → (S ′, µ′

r) are
different. This implies that the pair (µl, µr) is not uniquely determined up to isotopy (acting
on both the factors).

In the remaining part of this section we will show that any transverse unit vector field V on
S can be extended to a unit vector field on a neighborhood Ω of S such that

• it is tangent to the particle,
• it is transverse on any space-like surface S ′ contained in Ω,
• the map φ : S → S ′ obtained by following the orbits of V is an isometry for both µl
and µr.
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In fact there exists ǫ > 0 such that the map

F : S × (−ǫ, ǫ) ∋ (p, t) 7→ expp(tV (p)) ∈ AdS3 .

is well-defined and it is a diffeomorphism onto some neighborhood Ω of S in AdS3. Notice that
if p is the intersection point of S with some particle, F (p, t) lies on the particle for every t.
Moreover, by the assumption on V it is easy to check that F is a diffeomorphism around the
particles.

Clearly the map F induces on Ω a foliation by time-like geodesics parallel to V , so we can
consider the induced map

δ̂ : Ω → G(M)

and the bilinear forms µ̂l = δ̂∗(ml), µ̂r = δ̂∗(mr).

Since δ̂(F (p, t)) = δ(p), where δ : S → G(M) is the map defined in Definition 4.16, we have
that F ∗(µ̂•) = π∗

S(µ•) where πS : S × (−ǫ, ǫ) → S is the projection.

In particular, µ̂• is non-degenerate on every plane that is not tangent to V̂ . If S ′ is any space-
like surface, V̂ is transverse to it and we have that the induced metrics µ′

• = µ̂•|S′. Finally,
the map S ′ → S sending q ∈ S ′ to the intersection point of the geodesic leaf through q with S
turns out to be an isometry for both µ′

l, µl and µ
′
r and µr.

4.6. Left and right metrics on the future of a collision point. We consider now the case
where S is a space-like surface with a transverse vector field in a AdS spacetime which contains
a unique collision point p. Without loss of generality we suppose p in the past of S. Clearly
I+(p)∩S is a disk D with k singular points where k is the number of particles starting from p.

Definition 4.27. A connected open subset U of a hyperbolic surface S is convex if any path c
contained in U can be deformed to a geodesic path in U keeping the endpoints of c fixed.

The goal of this section is to prove the following proposition

Proposition 4.28. There are convex disks Dl, Dr isotopic to D in S such that (Dl, µl) is
isometric to (Dr, µr).

(Let us stress that here the isotopies are supposed not to displace the cone points.)
First we show that the statement is true for the holonomies.

Lemma 4.29. The holonomies of µl and µr restricted to π1(Dreg) are conjugated.

Proof. We use the fact that the holonomies of µl and µr are the left and right factors of the
holonomy of the AdS structure, as stated in Lemma 4.9.

So we have to show that the restriction of the holonomy of h to π1(Dreg) is conjugated to a
diagonal representation into SO0(2, 2) = SO0(2, 1)× SO0(2, 1).

If Σ is the link of the collision point, the inclusion π1(Dreg) → π1(Mreg) can be factored as the
composition π1(Dreg) → π1(Σreg) → π1(Mreg). So it is sufficient to prove that the restriction o
h to π1(Σreg) is conjugated to a diagonal representation.

On the other hand, this clearly follows since the holonomy h restricted to π1(Σreg) fixes a
point (see Lemma 4.8). �

Notice that Lemma 4.29 is not sufficient to conclude the proof of Proposition 4.28, since we
have to point out concrete disks Dl and Dr such that (Dl, µl) and (Dr, µl) are isometric. To
that aim we will use the same triangulation argument as in Lemma 4.24.

The main difference is that in this case Dl and Dr have boundary, so we need to select
them carefully: the key point in the proof of Lemma 4.24 is that pairs of points are joint by a
minimizing geodesic. So in order to apply the same argument we need the convexity of Dl and
Dr.
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Proof. Take a sequence Dn of disks isotopic to D such that the µl-length of ∂Dn converges to
the infimum of the µl-lengths of boundary curves of disks isotopic to D.
∂Dn converges to a µl-geodesic graph Γ with vertices at cone points of D. In fact, locally

around each point x of Γ we see two regions Ω1 and Ω2 in S \ Γ. By the minimizing property
we easily see that if Ωi is in the limit of S \Dn, then the angle contained in Ωi with vertex at
x is bigger than π. Since singularities are supposed to have angles in (0, 2π) we easily see that
one of the following possibilities occurs:

• D contains only one cone point, and Γ coincides with it.
• D contains exactly two cone points and Γ is a segment with vertices at cone points.
• D contains more than 2 cone points and Γ is a circle bounding a convex disk D′

l such
that the regular neighborhoods of D′

l are isotopic to D.

In the first case it is sufficient to define Dl, Dr to be disks of radius ǫ around the cone point
for µl and µr respectively.

In the second case, notice that the µl-length of Γ, say a, is determined by the holonomy of
µl on Dreg. Since the holonomies of µl and µr on Dreg coincide Γ can be deformed to an arc Γ′

which is µr geodesic and such that the µr-length of Γ′ is also a. Then a µl-regular neighborhood
of Γ and a µr-regular neighborhood of Γ′ are isometric.

In the third case, we can construct a µl-geodesic triangulation of D′
l as in Proposition 4.24.

The shape of this triangulation just depend on the holonomy of the disk, and this implies that
each triangle of this triangulation can be deformed to a µr-triangle.

This implies that there exists an isometric embedding (D′
l, µl) → (S, µr) which is isotopic to

the inclusion D → S. Thickening a bit D′
l we get a convex disk Dl isotopic to D such that

(D′
l, µl) admits an isometric embedding (isotopic to the identity) into (S, µr). �

Remark 4.30. In general the intersection of two convex disks is not connected. On the other
hand, the proof of Proposition 4.28 shows that any convex disk isotopic to D must contain D′

l.
This implies that if D1, D2 are convex disks isotopic to D, then D1∩D2 contains a convex disk
isotopic to D.

Example. If only two particles, p1 and p2, collide, the corresponding cone points are at the same
distance in the left and right hyperbolic metric of Ω; more precisely, there are two segments of
the same length, one in the left and one in the right hyperbolic metric of Ω, joining the cone
points corresponding to p1 and to p2. Moreover the length of those segments is equal to the
“angle” between p1 and p2 at c, i.e., to the distance between the corresponding points in the
link of c.

5. Surgeries at collisions

We now wish to understand how the left and right hyperbolic metrics change when a collision
occurs.

5.1. Good spacial slices. The first step in understanding AdS manifolds with colliding par-
ticles is to define more easily understandable pieces.

Definition 5.1. Let M be an AdS manifold with colliding particles. A spacial slice in M is
a subset Ω such that

• there exists a closed surfaces S with marked points x1, · · · , xn and a homeomorphism
φ : S × [0, 1] → Ω,

• φ sends {x1, · · · , xn} × [0, 1] to the singular set of Ω,
• φ(S × {0}) and φ(S × {1}) are space-like surfaces.

Ω is a good spacial slice if in addition
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• it contains a space-like surface with a transverse vector field.

Hence, we have constructed at the end of Section 4.5 a good spacial slice in the neighborhood
of any Cauchy surface equipped with a transverse vector field. Observe that spacial slices do
not contain interactions.

It is useful to note that Lemma 4.23, along with its proof, applies also to surfaces with
boundary, with a transverse vector field, embedded in a good spacial slice. Such surfaces
determine the holonomy of the restriction of the left and right metrics to surfaces with boundary,
as explained in the following remark. The proof is a direct consequence of the arguments used
in Section 4, and more specifically in the proof of Lemma 4.23.

Remark 5.2. Let Ω be a good spacial slice, let D ⊂ Ω be a space-like surface with boundary,
and let u′ be a transverse vector field on D. Then u′ determines a left and a right hyperbolic
metric, µ′

l, µ
′
r on D, as for closed surfaces above. Moreover for any closed curve γ contained in

D, the holonomies of µ′
l and µ

′
r on γ are equal respectively to the left and right parts of the

holonomy of γ in M .

5.2. Surgeries on the left and right metrics. In this section we consider in details how the
left and right metrics change when a collision occurs. The first step is to define some simple
notions of surgery on hyperbolic surfaces with cone singularities, and on pairs of such surfaces.
We will later prove that those surgeries are exactly those that can happen on the left and right
metrics of spacial slices of an AdS manifold with particles when a collision occurs.

5.2.1. Surgery on hyperbolic surfaces. The basic building block of the surgeries considered here
is a simple operation where one replaces a disk, in a hyperbolic surface with cone singularities,
by another disk with only one singularity.

Definition 5.3. Let S− and S0 be two hyperbolic cone-surfaces, and let D− ⊂ S− be homeo-
morphic to an open disk. We say that S0 is obtained from S− by collapsing D− if

• there exists an isometric embedding i : S− \D− → S0,
• S0\i(S−\D−) is homeomorphic to an open disk and contains exactly one cone singularity
s0, of angle θ ∈ (0, 2π).

We call s0 the collapsed singularity of S0.

Note that the geometry of the disk S0 \ i(S− \D−) depends only on the geometry of D−. In
other terms, there is a hyperbolic disk D0,− with exactly one cone singularity, depending only
on D−, and an isometric embedding j− : D0,− → S0 such that S0 \ j(D0,−) = S− \D−.

We now introduce the surgery on pairs of hyperbolic cone-surfaces, which corresponds —
as it will be seen below — to what occurs to the left and right hyperbolic metrics of an AdS
manifold with particles when a particle collision occurs. The basic idea is that a disk surgery is
done on both Sl− and Sr−, collapsing the same disk D− (up to isometry of course) and yielding
the same disk D+ (again up to isometry). However an additional condition is necessary, stating
that the “relative position” of D− and D+ is the same on the left and on the right side.

We consider a surface S with a couple of hyperbolic cone metrics µl, µr and we suppose that
(up to isotopy) they coincide in a neighborhood of a singular convex disk D. Moreover we will
suppose that the holonomy of ∂D (for both µl and µr) is elliptic of angle θ ∈ (0, 2π) and that
a collar neighborhood of ∂D admits an isometric embedding (for both µl and µr) i : ∂D → Hθ,
where Hθ is the model of the singularity of angle θ. The image of those embeddings bound
a disk D0 in Hθ containing the singular point. We consider now the surface S0 obtained by
cutting from S the disk D and pasting the disk D0 using i as glueing map. Notice that the
metrics µl and µr glue to the metric µ of D0, yielding two singular metrics which coincide on
a disk D.
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Definition 5.4. We say that the triple (S0, µ
0
l , µ

0
r) is obtained by (S, µl, µr) by collapsing D−.

Changing µl, µr by two different isotopies (but requiring that they coincide on some disk D′

isotopic to D), we get another collapsed surface S ′
0, µ

′
l
0, µ′

r
0. Clearly there are natural isometries

φl : (S0, µ
0
l ) → (S ′

0, µ
′

l
0
) φr : (S0, µ

0
r) → (S ′

0, µ
′

r
0
) .

Though those isometries are in general different, the following lemma establishes that when
D contains at least two cone points, φl and φr coincide in a neighborhood of the collapsed
singularity.

Lemma 5.5. If D contains at least two singular points, then φl and φr coincide in a neighbor-
hood of the collapsed singularity of S0.

Notice that if D contains only a singular point, then the statement is false. In fact, the proof
of Lemma 5.5 is based on the following simple fact which clearly depends on the fact that D
contains at least two cone points.

Sublemma 5.6. If D is a convex disk in a hyperbolic surface S with at least two cone sin-
gularities and if σ : D → S is an isometric immersion isotopic to the identity, then σ is the
identity.

Proof of Sublemma 5.6. Let p1, p2 cone points of D. The map σ fixes the two cone points, so it
fixes any geodesic arc which joins p1 to p2 and this easily implies that it fixes every point. �

Proof of Lemma 5.5. Assuming D′ ⊂ D and µl = µ′
l, µr = µ′

r, the statement is clearly true.
Similarly, the statement is true also assuming there exists a diffeomorphism u of S isotopic

to the identity such that µ′
l = u∗(µl), µ

′
r = u∗(µl) and D

′ = u−1(D).
So it is sufficient to consider the case where µ′

l = µl, µ
′
r = u∗(µr) for some diffeomorphism u

isotopic to the identity.
Notice that in this case the disk u(D′) is µr-convex. In particular there is a µr-convex disk ∆

contained inD∩u(D′) and isotopic toD. Notice that µr = µl on ∆, so this disk is also µl-convex.
The restriction of u−1 to ∆ is an isometric embedding of (∆, µl = µr) → (D′, µl = µ′

r) ⊂ (S, µl).
By Sublemma 5.6,u|∆ = Id.

Now, let (Ŝ0, µ̂l, µ̂r) be the surface obtained by collapsing ∆ on (S, µl, µr) and let (Ŝ ′
0, µ̂l, µ̂r)

be the surface obtained by collapsing ∆ on (S, µ′
l, µ

′
r). Notice that the isometries φ̂l, φ̂r : Ŝ

′
0 → Ŝ0

extend respectively the identity and u on S ′′ = S \∆. So they coincide on ∂∆ and this shows

that they coincide on the disk ∆′′
0 = Ŝ0 \ S

′′.

On the other hand, the isometries ψl, ψr : S0 → Ŝ0 coincide in a neighborhood of the collapsed
point (because ∆ ⊂ D) and similarly do the isometries ψ′

l, ψ
′
r : S

′
0 → Ŝ ′

0.

The statement follows since φl = (ψ′
l)
−1 ◦ φ̂l ◦ ψl and φr = (ψ′

r)
−1 ◦ φ̂r ◦ ψr. �

Definition 5.7. Let S− and S+ be two surfaces, let µ−

l , µ
−
r be hyperbolic cone metrics on S−

sharing the same singular locus σ− and let µ+
l , µ

+
r be hyperbolic cone metrics on S+ with singular

locus σ+. We say that (S+, µ
+
l , µ

+
r ) is obtained from (S−, µ

−

l , µ
−
r ) by a double surgery if up

to changing those metrics in their isotopy classes, the following conditions are satisfied:

(1) There are embedded singular disks D− ⊂ S− and D+ ⊂ S+ such that µ+
l and µ+

r coincide
in a neighborhood of D+ and µ−

l and µ−
r coincide in a neighborhood of D−.

(2) The corresponding collapsed surfaces (S0, µ
0
l , µ

0
r) and (Ŝ0, µ̂

0
l , µ̂

0
r) are isometric, that is

there are two isometries

φl : (S0, µ
0
l ) → (Ŝ0, µ̂

0
l ) φr : (S0, µ

0
r) → (Ŝ0, µ̂

0
r) .

(3) φl and φr are homotopic and coincide in a neighborhood of the collapsed points.
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Figure 3. An example of two pairs of surfaces which satisfy all conditions but
(3) in the definition of double surgery.

The disks D− and D+ are called the surgery disks, whereas the homotopy class of φl and φr is
called the identification map.

Remark 5.8. Condition (3) in the above definition needs some explanation. Notice that since
µ0
l coincides with µ

0
r in a neighborhood of the collapsed point of S0, and µ̂

0
r coincides wih µ̂

0
r in

a neighborhood of the collapsed point of Ŝ0 we have that in general φ−1
r φl is an isometry in a

neighborhood of the collapsed point, that is, there is a number θ such that φ−1
r φl is a rotation

of angle θ. We require that θ = 0. In the simple case where only one surgery is sufficient, this
condition means that the same surgery transforms µ−

l into µ+
l and µ−

r into µ+
r .

The following example shows a case where condition (3) is not satisfied (see Figure 3). Take
a surface (S, µ) with two cone points such that the holonomy around the cone points is elliptic
and there is a constant curvature circle c which bounds a disk D containing the cone points.
Now take S− = S, µ−

l , µ
−
r = µ, S+ = S and µ+

l = µ. Finally define µ+
r by twisting the disk

D of angle θ0 (this is possible since ∂D has constant curvature). More formally, the metric µ+
r

is constructed as follows: let τ : S \ D̊ → S \ D̊ be the identity outside a collar of ∂D and a
rotation of angle θ on ∂D. Then, µ+

r = τ ∗(µ) on S \D and µ on D.
In this case, if S0 is the surface obtained from S− by replacing D by a disk Dθ0 with only

one cone point of angle θ0, and Ŝ0 is the surface obtained by replacing D by Dθ0 , then φl is the
identity map, whereas φr is τ outside S \D and is a rotation of angle θ on D.

Note however that if D+ (or D−) contains only one cone singularity, then condition (3) is
always satisfied.

Heuristically, the fact that (S+, µ
+
l , µ

+
r ) and (S−, µ

−

l , µ
−
r ) are related by a double surgery

means that there is a surface S0, µl, µr and two singular disks D− and D+ such that S+ is
obtained by replacing a disk in S0 containing a cone point by D+ and S− is obtained by
replacing another disk containing the same cone point by D−. It is tempting to simplify this
definition, and to replace directly D− by D+ without going through the intermediate step of S0

with only one singularity instead of either D− or D+. It appears however that it is not always
possible to do this direct surgery — an example is described in Appendix A of a situation where
a double surgery as defined here cannot be replaced by a simple surgery where one topological
disk is replaced by another. Theorem 6.1 shows that the relevant notion when considering
collisions of particles in AdS spacetimes is that of double surgery, rather than the simpler
notion of simple surgery on both the left and right metrics.

5.2.2. Setting and main statement. We now consider a more precise setting. Let Ω be an AdS
manifold with interacting particles, containing exactly one collision point p, which we suppose
has positive mass. Suppose that p is the future endpoint of n particles s1, · · · , sn and the past
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endpoint of m particles s′1, · · · , s
′
m. Let θ1, · · · , θn be the cone singularities at the si, and let

θ′1, · · · , θ
′
m be the cone singularities at the s′j .

Suppose that Ω is the union of two good space-like slices Ω− and Ω+, such that:

• they have disjoint interior,
• the future boundary of Ω− is equal to the past boundary of Ω+,
• Ω− contains s1, · · · , sn and Ω+ contains s′1, · · · , s

′
m.

We call S− a space-like surface in Ω− with a transverse vector field u−, and S+ a space-like
surface in Ω+ with a transverse vector field u+. Let µ±

l , µ
±
r be the left and right hyperbolic

metrics defined on S± by u′±.

Proposition 5.9. Under those conditions, the triple (S+, µ
+
l , µ

+
r ) is obtained from the triple

(S−, µ
−

l , µ
−
r ) by a double surgery.

The surgery disks are in the isotopy class of D+ = I+(p) ∩ S+ and D− = I−(p) ∩ S−,
respectively, whereas the identification maps are in the isotopy class of the map S+ \ D+ →
S− \D− obtained by following any timelike flow sending ∂D+ to ∂D−.

Note: In the proof of this proposition and in the rest of the paper we will consider developing
maps and holonomies of a singular manifold X . So we need to consider the universal covering
and the fundamental groups of the regular part ofX , whereas in general we will not be interested
in the fundamental group and the universal covering of X . For this reason, from now on π1(X)
and X̃ will denote respectively the fundamental group and the universal covering of the regular
part of X .

Proof. By Proposition 4.28, up to changing µ+
l and µ+

r by an isotopy, we may suppose that they
coincide around a disk D+ containing the singular points pi = si ∩ S+. Analogously we may
suppose that µ−

l and µ−
r coincide on a disk D− which contains the singular points p′i = s′i ∩S−.

By the positivity of the mass of the collision point, the holonomy of ∂D+ for µ+
• is elliptic

of angle θ0 ∈ (0, 2π). In particular there is an embedding of a neighborhood of ∂D+ into the
model space Hθ0 of the cone angle θ0.

So we can consider the surface (S0, µ
0
l , µ

0
r) obtained by collapsing D+ on (S+, µ

+
l , µ

+
r ). Anal-

ogously let (Ŝ0, µ̂
0
l , µ̂

0
r) be the surface obtained by collapsing D− on (S−, µ

−

l , µ
−
r ).

Let us regard the fundamental group as the set of covering transformations on the universal
cover. In particular, any lifting on the universal covering of the inclusions

(S− \D−) → S− →M (S+ \D+) → S+ →M

determines inclusions π1(S− \D−) → π1(S−) → π1(M) and π1(S+ \D+) → π1(S+) → π1(M).
Since S− \D− and S+ \D+ are isotopic in M , we may fix those liftings

˜(S− \D−) → S̃− → M̃ ˜(S+ \D+) → S̃+ → M̃

so that π1(S− \D−) is identified to π1(S+ \D+) as subgroups of π1(M).

Finally since the inclusions S− \D− → Ŝ0 and S+ \D+ → S0 are homotopy equivalence, we

may fix identifications between π1(S−\D−) and π1(Ŝ0) and π1(S+\D+) and π1(S0). Notice that
those identifications are unique up to conjugation and the choice of concrete ones is equivalent

to choosing liftings ˜S+ \D+ → S̃0 and ˜S− \D− →
˜̂
S0 of the natural inclusions.

Notice that through these identifications, the holonomies of µ0
l , µ

0
r coincide with the

holonomies of µ̂0
l , µ̂

0
r, so, by Proposition 4.24, there exist isometries

φl : (Ŝ0, µ̂
0
l ) → (S0, µ

0
l ) φr : (Ŝ0, µ̂

0
r) → (S0, µ

0
r)
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Figure 4. Two different interaction possibilities

which admit liftings to the universal covering φ̃l, φ̃r :
˜̂
S0 → S̃0 which act trivially on the

fundamental groups

φ̃l ◦ γ ◦ (φ̃l)
−1 = φ̃r ◦ γ ◦ (φ̃r)

−1 = γ ,

where we are using the identification π1(S0) = π1(Ŝ0) fixed above.
Notice that φl and φr are isotopic, since they induce the same map on the fundamental

groups.
In order to prove condition (3) in Definition 5.7, we also fix liftings D̃+ → S̃+ and D̃− → S̃−,

so that D̃+ ∩ ˜S+ \D+ and D̃− ∩ ˜S− \D− are the images of liftings c+ and c− of ∂D+ and ∂D−,
respectively. We may moreover suppose that the stabilizers of c+ and c− in π1(M) are the same
Z-subgroup generated by γ0.

We fix developing maps

dev•+ : (S̃+, µ
•

+) → H2

so that they coincides on D̃+. Notice that the restriction of dev•+ on ˜S+ \D+ extends to a

developing map dev•0 : S̃0 → H2.

Clearly, d̂ev
•

0 := dev•0 ◦ φ• is a developing map for µ̂0
•.

Finally let devl−, dev
r
− be the developing maps of µ•

− which coincide with d̂ev
•

0 on ˜S− \D−.
Notice that on c− the holonomy representations of the maps devl− and devr− differ exactly by

the rotation R̃ ∈ PSL(2,R) which corresponds to φrφ
−1
l around the cone point. In particular,

if γ ∈ π1(D−) we have

hr(γ) = R̃hl(γ)R̃
−1 .

Notice that π1(Ω) is the amalgamated product of π1(S+) and π1(S−) with the identification
of π1(S+ \D+) and π1(S− \D−) described above.

The holonomies of the developing maps dev•± glue to a pair of representations

(hl, hr) : π1(Ω) → PSL2(R)
2

which coincide with the holonomy representation of Ω.
If Σ is the link around the collision point, then π1(Σ) is the amalgamated product of π1(D−)

and π1(D+). If γ ∈ π1(D+) then hr(γ) = hl(γ), whereas if γ ∈ π1(D−) then hr(γ) = R̃hl(γ)R̃
−1.

Imposing that the restrictions of the representations hl and hr on π1(Σ) are the same, we

obtain that R̃ = Id. �

Remark 5.10. Let us consider the examples in Figure 4. In the example on the left, Proposition
5.9 indicates that the left and right metrics on the surface below and the left and right metrics
on the surface above are related by a double surgery
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In the example on the right, this is no longer true. On the other hand, conditions (1) and
(2) in the definition of double surgery are still valid. The same argument used in the proof of
Proposition 5.9 shows that in this case the map φl ◦φ

−1
r is a rotation about the collapsed point

of angle equal to the distance between the collision points.

5.3. Transverse vector fields after a collision. It might be interesting to remark that the
description made in Proposition 5.9 of the surgery on the left and right hyperbolic metrics
corresponding to a collision only holds – and actually only makes sense – if there is a space-like
surface with a transverse vector field both before and after the collision. However the existence
of such a surface before the collision does not ensure the existence of one after the collision,
even for simple collisions.

A simple example of such a phenomenon can be obtained by an extension of the example
given in Section 4.4 of an AdS space with two particles containing no space-like surface with
a transverse vector field. Consider the space Mθ described in that example, with θ < l, so
that Mθ contains a space-like surface with a transverse vector field. This space has two cone
singularities, d0 and d1, each containing one of the endpoints of s0. It is now possible to perform
on this space a simple surgery as described in [BBS11, Section 7.1] replacing the part of d1 in
the past of its intersection with s0 by two cone singularities, say d2 and d3, intersecting at the
endpoint of s0. This can be done in such a way that the angle between the plane containing
s0 and d2 and the plane containing s0 and d0, is equal to l. The argument given above for Mex

then shows that there is no space-like surface with a transverse vector field in a spacial slice
before the collision.

5.4. The graph of interactions. The previous section contains a description of the kind of
surgery on the left and right hyperbolic metrics corresponding to a collision of particles. Here
a more global description is sought, and we will associate to an AdS manifold with colliding
particles a graph describing the relation between the different spacial slices. In all this part we
fix an AdS manifold with colliding particles, M .

Let Ω,Ω′ be two spacial slices in M . They are equivalent if each space-like surface in Ω is
isotopic to a space-like surface in Ω′. Note that this clearly defines an equivalence relation on
the spacial slices in M .

Definition 5.11. M is a good AdS manifold with colliding particles if any spacial slice in M
is equivalent to a good spacial slice.

Clearly if two good spacial slices are equivalent then their holonomies are the same, so that
their left and right hyperbolic metrics are isotopic by Proposition 4.24.

Some of the examples constructed by [BBS11, Proposition 7.7] are indeed good AdS manifolds
with colliding particles. (To obtain one such example, one can construct an AdS manifold with
colliding particles by a surgery on a Fuchsian space with one particle, replacing a neighborhood
of the particle by a tube where two particles collide to become two new particles, so that the
two particles are almost parallel both before and after the collision.)

Definition 5.12. Let Ω− and Ω+ be two spacial slices inM . They are adjacent if the union of
the compact connected components of the complement of the interior of Ω−∪Ω+ in M contains
exactly one collision. We will say that Ω− is anterior to Ω+ if this collision is in the future of
Ω− and in the past of Ω+.

Note that this relation is compatible with the equivalence relation on the spacial slices: if
Ω− is adjacent to Ω+ and Ω′

− (resp. Ω′
+) is equivalent to Ω− (resp. Ω+) then Ω′

− is adjacent to
Ω′

+. Moreover if Ω− is anterior to Ω+ then Ω′
− is anterior to Ω′

+.
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Definition 5.13. The graph of spacial slices is the oriented graph associated to a good AdS
manifold with colliding particles M in the following way.

• The vertices of G correspond to the equivalence classes of spacial slices in M .
• Given two vertices v1, v2 of G, there is an edge between v1 and v2 if the corresponding
spacial slices are adjacent.

• This edge is oriented from v1 to v2 if the spacial slice corresponding to v1 is anterior to
the spacial slice corresponding to v2.

Remark 5.14. Notice that two different admissible AdS structures in U(g, T, θ) may have dif-
ferent graph of spacial slices. On the other hand, it is clear that the graphs of spacial slices of
spacetimes in a small neighborhood of some fixed space M ∈ U(g, T, θ) naturally contain the
graph of spacial slices of M .

Note that, for the constructions that follow and in particular for Theorem 6.1, it would be
sufficient to require only, rather than Definition 5.11, that there is a path on the graph of spatial
slices of M whose vertices are equivalent to good slices.

5.5. The topological and geometric structure added to the graph of interactions.
Clearly the graph of spacial slice is not in general a tree – there might be several sequences of
collisions leading from one spacial slice to another one. A simple example is given in Figure
5, where the graph of a manifold with colliding particles is shown together with a schematic
picture of the collisions.

A

B

C

D

F

E

A

E

F

C D

B

Figure 5. The graph of spacial slices.

The graph of spacial slices is clearly not sufficient to recover an AdS manifold with colliding
particles, additional data are needed.

Definition 5.15. A topological data associated to an oriented graph is the choice of:

• For each vertex v, of a closed surface Sv with n marked points p1, · · · , pn, and a n-tuple
θv = (θ1, · · · , θn) ∈ (0, 2π)n.

• For each oriented edge e with vertices e− and e+, of:
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(1) a homotopy class of disks De,+ ⊂ Se+, where the homotopies are in the complement
of the marked points pi (or equivalently they are homotopies of the complements of
the pi in Sv),

(2) a homotopy class of disks De,− ⊂ Se−, where again the homotopies fix the marked
points,

(3) an isotopy class ie of homeomorphisms from Se− \De,− to Se+ \De,+ sending the
marked points to the marked points.

Definition 5.16. A geometric data associated to an oriented graph endowed with a topological
data is the choice, for each vertex v, of two hyperbolic metrics µl(v), µr(v) on Sv, with a cone sin-
gularity of angle θi at pi, so that, for each edge e with endpoints e− and e+, (Se+ , µl(e+), µr(e+))
is obtained from (Se−, µl(e−), µr(e−)) by a double surgery with surgery disks De+ and De− re-
spectively, as seen in Definition 5.7.

Given a good AdS space with colliding particles M we can consider its graph of collisions
Γ, there is a natural topological and geometric data associated to M on Γ. Given a vertex v
of the graph of collisions Γ, it corresponds to a good spacial slice Ωv in M , and we take as Sv
a space-like surface in Ωv. The marked points correspond to the intersections of Sv with the
particles in Sv. By definition of a good spacial slice, Sv admits a transverse vector field, so one
can define the left and right hyperbolic metrics µl(v) and µr(v) on Sv through Definition 4.16.
The fact that those two metrics are well defined follows from Lemma 4.23.

Now consider an edge of Γ, that, is a collision between particles. Let e− corresponds to the
good spacial slice Ω− in the past of the collision, and e+ to the good spacial slice Ω+ in the
future of the collision. It follows from Proposition 5.9 that (Se+ , µl(e+), µr(e+)) is obtained
from (Se−, µl(e−), µr(e−)) by a double surgery.

6. From the geometric data to the structure

In this section we fix a maximal good AdS spacetime M0 ∈ U(g, T, θ) with collision and
we consider the corresponding topological data X . Let D(X) the set of geometric data with
topological data X . An element of D(X) is basically a collection of pairs of singular hyperbolic
metrics µl(v) and µr(v) on Sv for every vertex of the graph of interaction, where the cone
singularities are fixed by the topological data. Thus we can regard D(X) as a subset of the
Cartesian product ΠvT (Sv, θv)

2, where T (Sv, θv) denotes the Teichmüller space of singular
hyperbolic metrics with cone angles θ1 . . . θn. We will consider on D(X) the induced topology.

Notice that there is a neighborhood U of M0 ∈ U(g, T, θ) such that:

• The graph of spacial slice of spacetimes in U contains the graph of spacial slices of M0.
• The topological data of M0 coincides with the restriction of the topological data of any
M ∈ U to the graph of M0.

• Every vertex of the graph of M0 corresponds to a good spacial slice for any structure of
U (this because the transversality condition is open).

This defines a map
GD : U → D(X)

sending any structure M ∈ U to the corresponding geometric data.

Theorem 6.1. Up to shrinking U , the map GD is injective and open.

Proof. We will construct an open and injective map

H : D(X) → R(g, T, θ)

such that the holonomy map hol : U(g, T, θ) → R(g, T, θ) factors as hol = H ◦ GD. The
conclusion of the proof will follow from the existence of this map and from Theorem 3.3.
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In order to construct the map H we give a description of the fundamental group of M by
means of the topological data. We fix a path in the graph of M0, say v1, . . . , vn, joining the
initial vertex to the final vertex, and consider the corresponding sequence of good space-like
surfaces S1, . . . , Sn.

As in the proof of Proposition 5.9 we may fix lifting of the natural inclusions

˜Sk \Dk,− → S̃k, ˜Sk+1 \Dk,+ → S̃k+1, S̃k → M̃

so that the corresponding inclusions of fundamental groups π1(Sk \ Dk,•) < π1(Sk) < π1(M)
make the following diagram commutative

(5)

π1(Sk \Dk,−)
(iek )∗−−−→ π1(Sk+1 \Dk,+)y

y
π1(M) π1(M)

Notice that when the liftings S̃1 \D1,− → S̃1 and S̃1 → M are chosen, all the other liftings
are fixed by the commutativity of (5).

An inductive argument, based on the van Kampen theorem, shows that the induced map

π1(S1) ∗ π1(S2) ∗ . . . ∗ π1(Sn) → π1(M)

is surjective with kernel generated by elements (iek)∗(γ)γ
−1 for γ ∈ π1(Sk \Dk,−).

In particular given a geometric data µ = (µl(v), µr(v)), we may fix the holonomy represen-
tations of the left and right metrics so that they determine a representation

H = H(µ) : π1(M) → PSL2(R)× PSL2(R) .

More precisely we fix the holonomies of µl(v1), µr(v1), say h
1
l , h

1
r , in their conjugacy classes.

Then, we can fix recursively the holonomies of µkl , µ
k
r in their conjugacy classes so that

hk•(γ) = hk+1
• ((iek)∗(γ))

for all γ ∈ π1(Sk \ Dk,−). Notice that once h1• is fixed, all the other representations are
uniquely determined, since the holonomy Sv \D is not elementary. In particular, though the
representation H depends on some choices (including the isomorphism between π1(M) and the
quotient of the free product of π1(Si)), its conjugacy class is well defined.

By definition hol = H ◦GD. So in order to conclude the proof we need to prove that

• H is injective;
• H takes value in R(g, T, θ) (that is, in the space of admissible representations as in
Definition 3.2);

• H is an open map.

The first point easily follows from Lemma 4.24, since the representation H(µ) contains all
the holonomies of the metrics µ(vi).

In order to prove that H(µ) is admissible, we need to check that its restriction to the funda-
mental group of the link of any collision point is conjugated to a diagonal representation. As
we will see, this is essentially a consequence of property (3) of the definition of double surgery
(as in Definition 5.7).

In fact, fix a collision point p, and suppose that Sk, Sk+1 are the surfaces separated by p. Fix
a lifting of the natural inclusions D̃k,− → S̃k so that:

• the intersection of the closure of D̃k,− and ˜Sk \Dk,− is not empty and it corresponds to

a lifting ∂̃− of ∂Dk,−.
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• Analogously the intersection of the closure of D̃k,+ and ˜Sk+1 \Dk,+ corresponds to a

lifting ∂̃+ of ∂Dk,−.

• the stabilizers of ∂̃− and ∂̃+ in π1(M) are the same Z subgroup generated by γ0.

Notice that with these choices the fundamental group of the link Σ of p is generated by
π1(D̃k,+) and π1(D̃k,−). Analogously if Ω is the union of adjacent spacial slices corresponding
to vk and vk+1, its fundamental group in π1(M) is generated by π1(Sk) and π1(Sk+1)

Changing the metrics µl(vk), µr(vk) and µl(vk+1), µr(vk+1) by some isotopy, we can require
that they coincide on Dk,− and Dk,+ respectively. Let Sc,−, Sc,+ be the surfaces obtained by
collapsing respectively Dk,− on (Sk, µl(vk), µr(vk)) and Dk,+ on (Sk+1, µl(vk+1), µr(vk+1)).

Finally choose liftings of the isometries φl, φr : Sc,− → Sc,+, say φ̃l, φ̃r, so that

(φ•)
−1 ◦ γ ◦ φ• = γ

for all γ ∈ π1(Sc,−) = π1(Sk \Dk,−) = π1(Sk+1 \Dk,+) = π1(Sc,+).
We fix now

(1) developing maps dev−l , dev
−
r : S̃k → H2 of µl(vk), µr(vk) so that they coincide on D̃k,−,

(2) developing maps d−l , d
−
r : S̃c,− → H2 extending dev−• (vk) on

˜Sk \Dk,−,

(3) developing maps d+l , d
+
r : S̃c,+ → H2 defined as d+• = d−• ◦ (φ̃•)

−1,

(4) developing maps dev+l , dev
+
r : S̃k+1 → H2 which extend d+• on ˜Sk+1 \Dk,+.

Notice that the holonomies of dev±l , dev
±
r glue to a representation HΩ : π1(Ω) → PSL(2,R)×

PSL(2,R) which is conjugated to H|π1(Ω).
So it is sufficient to prove that (HΩ)|π1(Σ) is a diagonal representations. Since we are assuming

that dev−l and dev−r coincide on D̃k,−, it is sufficient to prove that dev+l and dev+r coincide on

D̃k,+. Since µl(vk+1) coincides with µr(vk+1) on Dk,+, there exists R̃ ∈ PSL(2,R) such that

(6) dev+r = R̃ ◦ dev+l

on D̃k,+.
On the other hand, since ∂Dk,+ bounds a disk in Sc,+ where the left and right metrics coincide,

by condition (3) of Definition 5.7, φl and φr coincide on ∂Dk,+ so φ̃l and φ̃r coincide on ∂̃+. So

d+l and d+r coincide on ∂̃+. In particular dev+r = dev+l on ∂̃+, and this with (6) implies that

dev+r and dev+l coincide on the whole D̃k,+. This finishes the proof that H ∈ R(g, T, θ).
Finally we need to check that the map H : D(X) → R(g, T, θ) is open. Given H ′ close

to H(µ), the representation H ′|π1(Sv) is close to H(µ)|π1(Sv) so it is a pair of holonomies of
hyperbolic structures with cone angles µ′

l(v), µ
′
r(v). Since the trace of theH

′-image of peripheral
elements of π1(Sv) is fixed, the cone angle at each point xi is just θ(xi). Now in order to
conclude we need to check that if e = [v−, v+] is an edge of the graph of the manifold M ,
(Sv+ , µ

′
l(v+), µ

′
r(v+)) is obtained by a double surgery on (Sv−, µ

′
l(v−), µ

′
r(v−)) with surgery disks

isotopic to Dv−,− and Dv+,+ and identification maps isotopic to ie.
This fact can be easily proved by the same argument used in the proof of Proposition 5.9.

Let (S0, µ
0
l , µ

0
r), and (Ŝ0, µ̂

0
l , µ̂

0
r) be the surfaces obtained respectively from (Sv+ , µ

′
l(v+), µ

′
r(v+))

and (Sv− , µ
′
l(v−), µ

′
r(v−)) by collapsing Dv+,+ and Dv−,−. Notice that the holonomy of (S0, µ

0
•)

coincides with the holonomy of (Sv+ \Dv+,+, µ•(v+)) and analogously the holonomy of (Ŝ0, µ̂
0
•)

coincides with the holonomy of (Sv− \Dv−,−, µ•(v−)). Since (Sv+ \Dv+,+, µ•(v+)) is isotopic to

(Sv− \Dv−,−, µ•(v−)) inM we deduce that the holonomies of (S0, µ
0
•) and (Ŝ0, µ̂

0
•) are conjugate.

Thus, by Lemma 4.24, the collapsed surfaces S0 and Ŝ0 are isometric for both the left and right
metrics.



COLLISIONS OF PARTICLES 39

The fact that H ′ restricted to the fundamental group of the link of the collision point between
Sv− and Sv+ is diagonal implies that the condition (3) in the definition of double surgery is
satisfied. �

Appendix A. An example where a double surgery is needed

Let S1 and S2 be two hyperbolic surfaces with cone singularities of angles less than 2π and
let D1 and D2 be two disks embedded in S1 and S2 respectively. We suppose that there is a
diffeomorphism preserving cone points f : S1 \D1 → S2 \D2 such that the holonomy of S1 \D1

is conjugated to the representation obtained by composing the holonomy of S2 \ D2 with the
map f∗ : π1(S1 \D1) → π1(S2 \D2) induced by f . We will also assume in this appendix that
the holonomy of ∂D2 is elliptic of angle θ < 2π.

In Section 5.2 we have shown that collapsing D1 in S1 and D2 in S2 yields the same surface
(up to isometry). This means that there are two surgeries involved in the transformation from
S1 to S2. First the disk D1 is replaced by a disk P1 containing only a cone point, yielding a
surface S. Then another disk P2 of S isotopic to P1 is replaced by D2. We could expect at first
glance that a single surgery would be sufficient; for example, that choices of disks of surgery
can be made so that P1 and P2 coincide. But in this section we will prove that this cannot
always be the case. We will find a criterion to establish whether a single surgery is sufficient,
and will then construct an example where this criterion fails.

Notice that the complement of any disk isotopic to D• in S• isometrically embeds in S. We
consider the minimal convex disk ∆ isotopic to D• constructed in Proposition 4.28. (Notice
that if D• contains only 2 singular points, the ∆ degenerates to a segment, but the argument
below can be adapted.)

We still have that S•\∆• embeds in S. According to the following definition, the complement
of its image is a polygon with center p which we denote by P•.

Definition A.1. Let S be a hyperbolic surface with cone singularities, and p be a cone point
on s. A polygon with center p in S, is an embedded disk P , such that

• p is in its interior;
• P is the union of hyperbolic triangles which have all a vertex at p.

Proposition A.2. S2 is obtained by a single surgery on S1 if and only if P1 and P2 are contained
in a disk Π embedded in S.

The if part is easy: S \Π embeds in S• and its complement is a disk ∆′
• isotopic to D•. Thus

we can cut from S1 the disk ∆′
1 and glue instead the disk ∆′

2. The surface that we obtain is
obviously isometric to S2.

The only if part easily follows from the following lemma.

Lemma A.3. If S2 is obtained by a single surgery on S1, then the surgery can be done replacing
a convex disk D′

1 whose boundary is piecewise geodesic with some vertices at cone points and
some vertices in the smooth part (which can degenerate to segment) by a disk D′

2 with similar
properties.

Proof. We denote by D the set of disks embedded in S1 isotopic to D1, whose complement can
be embedded in S2 by an isometric map isotopic to f .

Take a sequence of disks Dn ∈ D which minimizes the length of the boundary. Take a
parameterization cn : [0, 1] → ∂Dn. Up to taking a subsequence, cn converges to a curve c∞
and Dn converges to some subset D′

1. By the minimality it turns out that c∞ is a piecewise
geodesic curve with vertices at cone points. Moreover if c∞(t0) is a cone point, then the segments
[c∞(t0)− ǫ, c∞(t0)] and [c∞(t0), c∞(t0 + ǫ)] form an angle bigger than π in S \D′

1.
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It follows that there are two cases: either c∞ spans a segment with vertices at two cone
points, or it is an embedded curve. In the first case D′

1 coincides with the support of c∞,
whereas in the second case it is a convex disk bounded by c∞.

In both cases S1 \D
′
1 embeds in S2. The complement D′

2 of the embedding of S1 \D
′
1 in S2

is still a convex disk with piecewise geodesic or a segment. Clearly S2 is obtained from S1 by
cutting D′

1 and replacing D′
2. �

We can now prove that the condition of Proposition A.2 is necessary. Let D′
1 and D′

2 be as
in Lemma A.3. The minimal disk ∆• is contained in D′

•.
It follows that S1 \D

′
1 and S2 \D

′
2 are both isometric to a region S ′ of S, whose complement

— say Π — is a polygon with vertex at p. Moreover S ′ is contained in S \ P1 and S \ P2, so Π
contains both P1 and P2, and this concludes the proof of Proposition A.2.

In the remaining part of this section we will construct an example of two surfaces S1 and
S2 satisfying the condition given at the beginning of the appendix but such that the disks P1

and P2 in S are not contained in a disk. This will show that S2 cannot be obtained by a single
surgery on S1.

First we will construct a surface S containing only a single cone point, then we will find two
convex polygons P1 and P2 around the cone point whose union is contained in no embedded disk.
Finally, making a surgery on P•, we will construct two surfaces S• such that the complement
of the corresponding minimal disk is isometric to the complement of S \ P•.

Construction of S and P•. We consider in H2 a regular convex octagon Q such that the sum
of its interior angles is θ ∈ (0, 2π). Gluing opposite sides of Q we obtain a hyperbolic surface
S with a cone point corresponding to the vertices of Q whose cone angle is θ. Denote by
π : Q→ S the projection map.

Let l be the length of any edge of Q. Choosing l′ < l/2, we can consider for every vertex pi
of Q the triangle Ti with two edges of length l′ contained in the edges of Q at p. The union
of those triangles projects to a convex polygon P0 with center p̄ in S. Notice that the angle of
this polygon is equal to 2φ, where φ is the base angle of the triangles. We now add to P0 a
triangle Zi with a vertex at the center of Q and opposite edge equal to an edge ei of a triangle
Ti. If l′ is close to l/2 then the sum of the angle of Zi at a vertex of ei and 2φ is less than π,
so Pi = P0 ∪ Zi is a convex polygon contained in S. Since P1 ∪ P2 contains a non-trivial loop,
it is not contained in any disk of S.

Construction of S1 and S2. Notice that P1 is a polygon with center p̄ in S. In fact T1 ∩ Z1 is
the union of two triangles with a vertex at p̄. In particular P1 can be decomposed as a union of
triangles with vertex at p̄. Each of these triangles has a boundary edge and two interior edges.
There is one interior edge joining p̄ to the center of Q whose length is u, whereas the length of
all the other interior edges is l′.

Choose ǫ small. We can deform every triangle of the decomposition of P1 without changing
its boundary edge and shortening the other two edges of ǫ. Let us call P ′

1 the polygon obtained
in this way. Replacing P1 by P

′
1 we get a surface S1 with a cone point at each vertex of P ′

1 and
a central vertex.

Analogously we can obtain a surface S2 by making a surgery on P2. It is not difficult to
construct a diffeomorphism f : S1\P

′
1 → S2\P

′
2 such that the following diagram is homotopically

commutative.
To conclude it is sufficient to notice that P ′

• is a minimal disk whose complement is isometric
to S \ P•. Since there is no disk containing both P1 and P2, Proposition A.2 implies that S2

cannot be obtained by a single surgery on S1.



COLLISIONS OF PARTICLES 41

References

[ABB+07] Lars Andersson, Thierry Barbot, Riccardo Benedetti, Francesco Bonsante, William M. Goldman,
François Labourie, Kevin P. Scannell, and Jean-Marc Schlenker. Notes on: “Lorentz spacetimes of
constant curvature” [Geom. Dedicata 126 (2007), 3–45; mr2328921] by G. Mess. Geom. Dedicata,
126:47–70, 2007.

[BBES03] Jeffrey Brock, Kenneth Bromberg, Richard Evans, and Juan Souto. Tameness on the boundary and

Ahlfors’ measure conjecture. Publ. Math. Inst. Hautes Études Sci., (98):145–166, 2003.
[BBS11] Thierry Barbot, Francesco Bonsante, and Jean-Marc Schlenker. Collisions of particles in locally AdS

spacetimes I. Local description and global examples. Comm. Math. Phys., 308(1):147–200, 2011.
[Ber60] Lipman Bers. Simultaneous uniformization. Bull. Amer. Math. Soc., 66:94–97, 1960.
[BLP05] Michel Boileau, Bernhard Leeb, and Joan Porti. Geometrization of 3-dimensional orbifolds. Ann. of

Math. (2), 162(1):195–290, 2005.
[BS09] Francesco Bonsante and Jean-Marc Schlenker. AdS manifolds with particles and earthquakes on

singular surfaces. Geom. Funct. Anal., 19(1):41–82, 2009.
[CEG86] R.D. Canary, D.B.A. Epstein, and P. Green. Notes on notes of Thurston. In Analytical and Geometric

Aspects of Hyperbolic Space. Edites by D.B.A. Epstein. London Mathematical Society Lecture Notes
Series 111, pages 3–92. Cambridge University Press, 1986.

[CHK00] Daryl Cooper, Craig D. Hodgson, and Steven P. Kerckhoff. Three-dimensional orbifolds and cone-
manifolds, volume 5 of MSJ Memoirs. Mathematical Society of Japan, Tokyo, 2000. With a postface
by Sadayoshi Kojima.

[Gol88] William M. Goldman. Topological components of spaces of representations. Invent. Math., 93(3):557–
607, 1988.

[HK98] Craig D. Hodgson and Steven P. Kerckhoff. Rigidity of hyperbolic cone-manifolds and hyperbolic
Dehn surgery. J. Differential Geom., 48:1–60, 1998.

[HM99] S. Holst and H.J. Matschull. The anti-de Sitter Gott universe: a rotating BTZ wormhole. Class.
Quantum Grav., 16(10):3095–3131, 1999.

[KS07] Kirill Krasnov and Jean-Marc Schlenker. Minimal surfaces and particles in 3-manifolds. Geom. Ded-
icata, 126:187–254, 2007.

[LS09] Cyril Lecuire and Jean-Marc Schlenker. The convex core of quasifuchsian manifolds with particles.
arXiv:0909.4182, 2009.

[Mes07] Geoffrey Mess. Lorentz spacetimes of constant curvature. Geom. Dedicata, 126:3–45, 2007.
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