1,233 research outputs found

    What moves sovereign bond markets? The effects of economic news on U.S. and German yields

    Get PDF
    Economic announcements are an important source of information, containing news that spills over internationally across markets, affecting yields. An analysis of the U.S. and German sovereign bond markets finds that the largest moves in yields are associated with U.S. announcements on labor market conditions, real GDP growth, and consumer sentiment.Bond market ; Bond market - Germany ; International finance

    Current Limitations on Governmental Invasion of First Amendment Freedoms

    Get PDF

    Weak Lensing Mass Reconstruction: Flexion vs Shear

    Full text link
    Weak gravitational lensing has proven to be a powerful tool to map directly the distribution of dark matter in the Universe. The technique, currently used, relies on the accurate measurement of the gravitational shear that corresponds to the first-order distortion of the background galaxy images. More recently, a new technique has been introduced that relies on the accurate measurement of the gravitational flexion that corresponds to the second-order distortion of the background galaxy images. This technique should probe structures on smaller scales than that of a shear analysis. The goal of this paper is to compare the ability of shear and flexion to reconstruct the dark matter distribution by taking into account the dispersion in shear and flexion measurements. Our results show that the flexion is less sensitive than shear for constructing the convergence maps on scales that are physically feasible for mapping, meaning that flexion alone not be used to do convergence map reconstruction, even on small scales.Comment: Submitted to Ap

    Gravitational waves from binary systems in circular orbits: Convergence of a dressed multipole truncation

    Get PDF
    The gravitational radiation originating from a compact binary system in circular orbit is usually expressed as an infinite sum over radiative multipole moments. In a slow-motion approximation, each multipole moment is then expressed as a post-Newtonian expansion in powers of v/c, the ratio of the orbital velocity to the speed of light. The bare multipole truncation of the radiation consists in keeping only the leading-order term in the post-Newtonian expansion of each moment, but summing over all the multipole moments. In the case of binary systems with small mass ratios, the bare multipole series was shown in a previous paper to converge for all values v/c < 2/e, where e is the base of natural logarithms. In this paper, we extend the analysis to a dressed multipole truncation of the radiation, in which the leading-order moments are corrected with terms of relative order (v/c)^2 and (v/c)^3. We find that the dressed multipole series converges also for all values v/c < 2/e, and that it coincides (within 1%) with the numerically ``exact'' results for v/c < 0.2.Comment: 9 pages, ReVTeX, 1 postscript figur

    Gravitational Flexion by Elliptical Dark Matter Haloes

    Full text link
    We present equations for the gravitational lensing flexion expected for an elliptical lens mass distribution. These can be reduced to one-dimensional finite integrals, thus saving significant computing time over a full two-dimensional calculation. We estimate constraints on galaxy halo ellipticities for a range of potential future surveys, finding that the constraints from the two different types of flexion are comparable and are up to two orders of magnitude tighter than those from shear. Flexion therefore appears to be a very promising potential tool for constraining the shapes of galaxy haloes from future surveys.Comment: 7 pages, 5 figures, submitted to MNRA

    New Constraints on the Complex Mass Substructure in Abell 1689 from Gravitational Flexion

    Full text link
    In a recent publication, the flexion aperture mass statistic was found to provide a robust and effective method by which substructure in galaxy clusters might be mapped. Moreover, we suggested that the masses and mass profile of structures might be constrained using this method. In this paper, we apply the flexion aperture mass technique to HST ACS images of Abell 1689. We demonstrate that the flexion aperture mass statistic is sensitive to small-scale structures in the central region of the cluster. While the central potential is not constrained by our method, due largely to missing data in the central 0.5â€Č^\prime of the cluster, we are able to place constraints on the masses and mass profiles of prominent substructures. We identify 4 separate mass peaks, and use the peak aperture mass signal and zero signal radius in each case to constrain the masses and mass profiles of these substructures. The three most massive peaks exhibit complex small-scale structure, and the masses indicated by the flexion aperture mass statistic suggest that these three peaks represent the dominant substructure component of the cluster (∌7×1014h−1M⊙\sim 7\times 10^{14}h^{-1}M_\odot). Their complex structure indicates that the cluster -- far from being relaxed -- may have recently undergone a merger. The smaller, subsidiary peak is located coincident with a group of galaxies within the cluster, with mass ∌1×1014h−1M⊙\sim 1\times10^{14}h^{-1}M_\odot. These results are in excellent agreement with previous substructure studies of this cluster.Comment: 18 pages, 10 figures, MNRAS accepted (7 Dec 2010

    Shape, shear and flexion II - Quantifying the flexion formalism for extended sources with the ray-bundle method

    Full text link
    Flexion-based weak gravitational lensing analysis is proving to be a useful adjunct to traditional shear-based techniques. As flexion arises from gradients across an image, analytic and numerical techniques are required to investigate flexion predictions for extended image/source pairs. Using the Schwarzschild lens model, we demonstrate that the ray-bundle method for gravitational lensing can be used to accurately recover second flexion, and is consistent with recovery of zero first flexion. Using lens plane to source plane bundle propagation, we find that second flexion can be recovered with an error no worse than 1% for bundle radii smaller than {\Delta}{\theta} = 0.01 {\theta}_E and lens plane impact pararameters greater than {\theta}_E + {\Delta}{\theta}, where {\theta}_E is the angular Einstein radius. Using source plane to lens plane bundle propagation, we demonstrate the existence of a preferred flexion zone. For images at radii closer to the lens than the inner boundary of this zone, indicative of the true strong lensing regime, the flexion formalism should be used with caution (errors greater than 5% for extended image/source pairs). We also define a shear zone boundary, beyond which image shapes are essentially indistinguishable from ellipses (1% error in ellipticity). While suggestive that a traditional weak lensing analysis is satisfactory beyond this boundary, a potentially detectable non-zero flexion signal remains.Comment: 14 pages, 13 figures, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Measuring Gravitational Lensing Flexions in Abell 1689 Using an Analytic Image Model

    Full text link
    Measuring dark matter substructure within galaxy cluster haloes is a fundamental probe of the Lambda-CDM model of structure formation. Gravitational lensing is a technique for measuring the total mass distribution which is independent of the nature of the gravitating matter, making it a vital tool for studying these dark-matter dominated objects. We present a new method for measuring weak gravitational lensing flexions, the gradients of the lensing shear field, to measure mass distributions on small angular scales. While previously published methods for measuring flexions focus on measuring derived properties of the lensed images, such as shapelet coefficients or surface brightness moments, our method instead fits a mass-sheet-transformation-invariant Analytic Image Model (AIM) to the each galaxy image. This simple parametric model traces the distortion of lensed image isophotes and constrains the flexion fields. We test the AIM method using simulated data images with realistic noise and a variety of unlensed image properties, and show that it successfully reproduces the input flexion fields. We also apply the AIM method for flexion measurement to Hubble Space Telescope observations of Abell 1689, and detect mass structure in the cluster using flexions measured with the AIM method.Comment: 44 pages, 4 figures, 3 tables. Accepted to ApJ. V2 (published version) has minor changes from V1; ApJ 736 (2011
    • 

    corecore