98 research outputs found
Ice sheet–free West Antarctica during peak early Oligocene glaciation
One of Earth’s most fundamental climate shifts – the greenhouse-icehouse transition 34 Ma ago – initiated Antarctic ice-sheet build-up, influencing global climate until today. However, the extent of the ice sheet during the Early Oligocene Glacial Maximum (~33.7–33.2 Ma) that immediately followed this transition, a critical knowledge gap for assessing feedbacks between permanently glaciated areas and early Cenozoic global climate reorganization, is uncertain. Here, we present shallow-marine drilling data constraining earliest Oligocene environmental conditions on West Antarctica’s Pacific margin – a key region for understanding Antarctic ice sheet-evolution. These data indicate a cool-temperate environment, with mild ocean and air temperatures preventing West Antarctic Ice Sheet formation. Climate-ice sheet modeling corroborates a highly asymmetric Antarctic ice sheet, thereby revealing its differential regional response to past and future climatic change
Role of Fibronectin in the Adhesion of Acinetobacter baumannii to Host Cells
Adhesion to host cells is an initial and important step in Acinetobacter baumannii pathogenesis. However, there is relatively little information on the mechanisms by which A. baumannii binds to and interacts with host cells. Adherence to extracellular matrix proteins, such as fibronectin, affords pathogens with a mechanism to invade epithelial cells. Here, we found that A. baumannii adheres more avidly to immobilized fibronectin than to control protein. Free fibronectin used as a competitor resulted in dose-dependent decreased binding of A. baumannii to fibronectin. Three outer membrane preparations (OMPs) were identified as fibronectin binding proteins (FBPs): OMPA, TonB-dependent copper receptor, and 34 kDa OMP. Moreover, we demonstrated that fibronectin inhibition and neutralization by specific antibody prevented significantly the adhesion of A. baumannii to human lung epithelial cells (A549 cells). Similarly, A. baumannii OMPA neutralization by specific antibody decreased significantly the adhesion of A. baumannii to A549 cells. These data indicate that FBPs are key adhesins that mediate binding of A. baumannii to human lung epithelial cells through interaction with fibronectin on the surface of these host cells
MeBo70 Seabed Drilling on a Polar Continental Shelf: Operational Report and Lessons From Drilling in the Amundsen Sea Embayment of West Antarctica
A multibarrel seabed drill rig was used for the first time to drill unconsolidated sediments and consolidated sedimentary rocks from an Antarctic shelf with core recoveries between 7% and 76%. We deployed the MARUM-MeBo70 drill device at nine drill sites in the Amundsen Sea Embayment. Three sites were located on the inner shelf of Pine Island Bay from which soft sediments, presumably deposited at high sedimentation rates in isolated small basins, were recovered from drill depths of up to 36 m below seafloor. Six sites were located on the middle shelf of the eastern and western embayment. Drilling at five of these sites recovered consolidated sediments and sedimentary rocks from dipping strata spanning ages from Cretaceous to Miocene. This report describes the initial coring results, the challenges posed by drifting icebergs and sea ice, and technical issues related to deployment of the MeBo70. We also present recommendations for similar future drilling campaigns on polar continental shelves
Comparative Analysis of Acinetobacters: Three Genomes for Three Lifestyles
Acinetobacter baumannii is the source of numerous nosocomial infections in humans and therefore deserves close attention as multidrug or even pandrug resistant strains are increasingly being identified worldwide. Here we report the comparison of two newly sequenced genomes of A. baumannii. The human isolate A. baumannii AYE is multidrug resistant whereas strain SDF, which was isolated from body lice, is antibiotic susceptible. As reference for comparison in this analysis, the genome of the soil-living bacterium A. baylyi strain ADP1 was used. The most interesting dissimilarities we observed were that i) whereas strain AYE and A. baylyi genomes harbored very few Insertion Sequence elements which could promote expression of downstream genes, strain SDF sequence contains several hundred of them that have played a crucial role in its genome reduction (gene disruptions and simple DNA loss); ii) strain SDF has low catabolic capacities compared to strain AYE. Interestingly, the latter has even higher catabolic capacities than A. baylyi which has already been reported as a very nutritionally versatile organism. This metabolic performance could explain the persistence of A. baumannii nosocomial strains in environments where nutrients are scarce; iii) several processes known to play a key role during host infection (biofilm formation, iron uptake, quorum sensing, virulence factors) were either different or absent, the best example of which is iron uptake. Indeed, strain AYE and A. baylyi use siderophore-based systems to scavenge iron from the environment whereas strain SDF uses an alternate system similar to the Haem Acquisition System (HAS). Taken together, all these observations suggest that the genome contents of the 3 Acinetobacters compared are partly shaped by life in distinct ecological niches: human (and more largely hospital environment), louse, soil
Deep water inflow slowed offshore expansion of the West Antarctic Ice Sheet at the Eocene-Oligocene transition
The stability of the West Antarctic Ice Sheet is threatened by the incursion of warm Circumpolar Deepwater which flows southwards via cross-shelf troughs towards the coast there melting ice shelves. However, the onset of this oceanic forcing on the development and evolution of the West Antarctic Ice Sheet remains poorly understood. Here, we use single- and multichannel seismic reflection profiles to investigate the architecture of a sediment body on the shelf of the Amundsen Sea Embayment. We estimate the formation age of this sediment body to be around the Eocene-Oligocene Transition and find that it possesses the geometry and depositional pattern of a plastered sediment drift. We suggest this indicates a southward inflow of deep water which probably supplied heat and, thus, prevented West Antarctic Ice Sheet advance beyond the coast at this time. We conclude that the West Antarctic Ice Sheet has likely experienced a strong oceanic influence on its dynamics since its initial formation
Comparison of the Virulence Potential of Acinetobacter Strains from Clinical and Environmental Sources
Several Acinetobacter strains have utility for biotechnology applications, yet some are opportunistic pathogens. We compared strains of seven Acinetobacter species (baumannii, Ab; calcoaceticus, Ac; guillouiae, Ag; haemolyticus, Ah; lwoffii, Al; junii, Aj; and venetianus, Av-RAG-1) for their potential virulence attributes, including proliferation in mammalian cell conditions, haemolytic/cytolytic activity, ability to elicit inflammatory signals, and antibiotic susceptibility. Only Ah grew at 102 and 104 bacteria/well in mammalian cell culture medium at 37°C. However, co-culture with colonic epithelial cells (HT29) improved growth of all bacterial strains, except Av-RAG-1. Cytotoxicity of Ab and Ah toward HT29 was at least double that of other test bacteria. These effects included bacterial adherence, loss of metabolism, substrate detachment, and cytolysis. Only Ab and Ah exhibited resistance to killing by macrophage-like J774A.1 cells. Haemolytic activity of Ah and Av-RAG-1 was strong, but undetectable for other strains. When killed with an antibiotic, Ab, Ah, Aj and Av-RAG-1 induced 3 to 9-fold elevated HT29 interleukin (IL)-8 levels. However, none of the strains altered levels of J774A.1 pro-inflammatory cytokines (IL-1β, IL-6 and tumor necrosis factor-α). Antibiotic susceptibility profiling showed that Ab, Ag and Aj were viable at low concentrations of some antibiotics. All strains were positive for virulence factor genes ompA and epsA, and negative for mutations in gyrA and parC genes that convey fluoroquinolone resistance. The data demonstrate that Av-RAG-1, Ag and Al lack some potentially harmful characteristics compared to other Acinetobacter strains tested, but the biotechnology candidate Av-RAG-1 should be scrutinized further prior to widespread use
Ice sheet–free West Antarctica during peak early Oligocene glaciation
One of Earth’s most fundamental climate shifts – the greenhouse-icehouse transition 34 Ma ago – initiated Antarctic ice-sheet build-up, influencing global climate until today. However, the extent of the ice sheet during the Early Oligocene Glacial Maximum (~33.7–33.2 Ma) that immediately followed this transition, a critical knowledge gap for assessing feedbacks between permanently glaciated areas and early Cenozoic global climate reorganization, is uncertain. Here, we present shallow-marine drilling data constraining earliest Oligocene environmental conditions on West Antarctica’s Pacific margin – a key region for understanding Antarctic ice sheet-evolution. These data indicate a cool-temperate environment, with mild ocean and air temperatures preventing West Antarctic Ice Sheet formation. Climate-ice sheet modeling corroborates a highly asymmetric Antarctic ice sheet, thereby revealing its differential regional response to past and future climatic change
- …