421 research outputs found

    Optimal solutions to matrix-valued Nehari problems and related limit theorems

    Full text link
    In a 1990 paper Helton and Young showed that under certain conditions the optimal solution of the Nehari problem corresponding to a finite rank Hankel operator with scalar entries can be efficiently approximated by certain functions defined in terms of finite dimensional restrictions of the Hankel operator. In this paper it is shown that these approximants appear as optimal solutions to restricted Nehari problems. The latter problems can be solved using relaxed commutant lifting theory. This observation is used to extent the Helton and Young approximation result to a matrix-valued setting. As in the Helton and Young paper the rate of convergence depends on the choice of the initial space in the approximation scheme.Comment: 22 page

    On the ultraviolet behaviour of quantum fields over noncommutative manifolds

    Full text link
    By exploiting the relation between Fredholm modules and the Segal-Shale-Stinespring version of canonical quantization, and taking as starting point the first-quantized fields described by Connes' axioms for noncommutative spin geometries, a Hamiltonian framework for fermion quantum fields over noncommutative manifolds is introduced. We analyze the ultraviolet behaviour of second-quantized fields over noncommutative 3-tori, and discuss what behaviour should be expected on other noncommutative spin manifolds.Comment: 10 pages, RevTeX version, a few references adde

    Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems

    Get PDF
    We present here a generalization of the scattering-matrix approach for the description of the propagation of electromagnetic waves in nanostructured magneto-optical systems. Our formalism allows us to describe all the key magneto-optical effects in any configuration in periodically patterned multilayer structures. The method can also be applied to describe periodic multilayer systems comprising materials with any type of optical anisotropy. We illustrate the method with the analysis of a recent experiment in which the transverse magneto-optical Kerr effect was measured in a Fe film with a periodic array of subwavelength circular holes. We show, in agreement with the experiments, that the excitation of surface plasmon polaritons in this system leads to a resonant enhancement of the transverse magneto-optical Kerr effect.Comment: 12 pages, 6 figures, submitted to Physical Review

    Smilansky's model of irreversible quantum graphs, II: the point spectrum

    Full text link
    In the model suggested by Smilansky one studies an operator describing the interaction between a quantum graph and a system of K one-dimensional oscillators attached at different points of the graph. This paper is a continuation of our investigation of the case K>1. For the sake of simplicity we consider K=2, but our argument applies to the general situation. In this second paper we apply the variational approach to the study of the point spectrum.Comment: 18 page

    A unified approach to Darboux transformations

    Full text link
    We analyze a certain class of integral equations related to Marchenko equations and Gel'fand-Levitan equations associated with various systems of ordinary differential operators. When the integral operator is perturbed by a finite-rank perturbation, we explicitly evaluate the change in the solution. We show how this result provides a unified approach to Darboux transformations associated with various systems of ordinary differential operators. We illustrate our theory by deriving the Darboux transformation for the Zakharov-Shabat system and show how the potential and wave function change when a discrete eigenvalue is added to the spectrum.Comment: final version that will appear in Inverse Problem

    Edgeworth Expansion of the Largest Eigenvalue Distribution Function of GUE Revisited

    Full text link
    We derive expansions of the resolvent Rn(x;y;t)=(Qn(x;t)Pn(y;t)-Qn(y;t)Pn(x;t))/(x-y) of the Hermite kernel Kn at the edge of the spectrum of the finite n Gaussian Unitary Ensemble (GUEn) and the finite n expansion of Qn(x;t) and Pn(x;t). Using these large n expansions, we give another proof of the derivation of an Edgeworth type theorem for the largest eigenvalue distribution function of GUEn. We conclude with a brief discussion on the derivation of the probability distribution function of the corresponding largest eigenvalue in the Gaussian Orthogonal Ensemble (GOEn) and Gaussian Symplectic Ensembles (GSEn)

    Generalized Bogoliubov transformations versus D-pseudo-bosons

    Get PDF
    We demonstrate that not all generalized Bogoliubov transformations lead to D -pseudo-bosons and prove that a correspondence between the two can only be achieved with the imposition of specific constraints on the parameters defining the transformation. For certain values of the parameters, we find that the norms of the vectors in sets of eigenvectors of two related apparently non-selfadjoint number-like operators possess different types of asymptotic behavior. We use this result to deduce further that they constitute bases for a Hilbert space, albeit neither of them can form a Riesz base. When the constraints are relaxed, they cease to be Hilbert space bases but remain D -quasibases

    Smilansky's model of irreversible quantum graphs, I: the absolutely continuous spectrum

    Full text link
    In the model suggested by Smilansky one studies an operator describing the interaction between a quantum graph and a system of KK one-dimensional oscillators attached at several different points in the graph. The present paper is the first one in which the case K>1K>1 is investigated. For the sake of simplicity we consider K=2, but our argument is of a general character. In this first of two papers on the problem, we describe the absolutely continuous spectrum. Our approach is based upon scattering theory

    Local filtering operations on two qubits

    Get PDF
    We consider one single copy of a mixed state of two qubits and investigate how its entanglement changes under local quantum operations and classical communications (LQCC) of the type ρ(AB)ρ(AB)\rho'\sim (A\otimes B)\rho(A\otimes B)^{\dagger}. We consider a real matrix parameterization of the set of density matrices and show that these LQCC operations correspond to left and right multiplication by a Lorentz matrix, followed by normalization. A constructive way of bringing this matrix into a normal form is derived. This allows us to calculate explicitly the optimal local filterin operations for concentrating entanglement. Furthermore we give a complete characterization of the mixed states that can be purified arbitrary close to a Bell state. Finally we obtain a new way of calculating the entanglement of formation.Comment: 4 page

    Biorthogonal Quantum Systems

    Full text link
    Models of PT symmetric quantum mechanics provide examples of biorthogonal quantum systems. The latter incorporporate all the structure of PT symmetric models, and allow for generalizations, especially in situations where the PT construction of the dual space fails. The formalism is illustrated by a few exact results for models of the form H=(p+\nu)^2+\sum_{k>0}\mu_{k}exp(ikx). In some non-trivial cases, equivalent hermitian theories are obtained and shown to be very simple: They are just free (chiral) particles. Field theory extensions are briefly considered.Comment: 34 pages, 5 eps figures; references added and other changes made to conform to journal versio
    corecore