37 research outputs found

    Создание условий для адаптации выпускников на рынке труда

    Get PDF
    There are errors in Table 1. Standard deviation is reported instead of standard error of the mean (SEM) for post-challenge stress protocol. Erroneous mean and SEM values are present for group-housed females in the GnRH challenge. Please see the corrected Table 1 here

    GnRH - a Missing Link between Testosterone Concentrations in Yolk and Plasma and Its Intergenerational Effects

    Get PDF
    Despite the strong interest in hormone-mediated maternal effects two key questions concerning their mechanisms are as yet unanswered: First, whether the deposition of hormones in the egg yolk is coupled with the levels of these hormones in the maternal circulation, and second, whether epigenetic changes as induced by embryonic exposure to maternal yolk hormones impinge on yolk hormone deposition at adulthood. We investigated the responsiveness to gonadotropin-releasing hormone (GnRH) in female canaries whose embryonic exposure to yolk testosterone had been manipulated. This enabled us to study to what extent GnRH interlinks testosterone concentrations in female circulation and egg yolk as well as the intergenerational potential of hormone-mediated maternal effects. As expected, canary females responded to GnRH with a rise in plasma testosterone. The GnRH-responsiveness was positively correlated with the yolk testosterone content. Factors stimulating the release of GnRH will, therefore, lead to an increase of testosterone in both plasma and egg, posing a potential constraint on the yolk hormone deposition due to testosterone related trade-offs within the laying female. Exposure to elevated yolk testosterone levels as embryo reduced the GnRH-responsiveness in adulthood, potentially limiting environmental influences on yolk testosterone deposition, but the concentrations of yolk testosterone itself were not affected

    Manipulation of primary sex ratio in birds:Lessons from the Homing Pigeon (<i>Columba livia domestica</i>)

    Get PDF
    Across various animal taxa not only the secondary sex ratio but also the primary sex ratio (at conception) shows significant deviations from the expected equal proportions of sons and daughters. Birds are especially intriguing to study this phenomenon as avian females are the heterogametic sex (ZW); therefore sex determination might be under direct control of the mother. Avian sex ratios vary in relation to environmental or maternal condition, which can also affect the production of maternal steroids that in turn are involved in reproduction and accumulate in the developing follicle before meiosis. As the proximate mechanisms underlying biased primary sex ratio are largely elusive, we explored how, and to what extent, maternal steroid hormones may be involved in affecting primary or secondary sex ratio in clutches of various species of pigeons. First we demonstrated a clear case of seasonal change in sex ratio in first eggs both in the Rock Pigeon (Columba livia) and in a related species, the Wood Pigeon (Columba palumbus), both producing clutches of two eggs. In the Homing Pigeon (Columba livia domestica), domesticated from the Rock Pigeon, testosterone treatment of breeding females induced a clear male bias, while corticosterone induced a female bias in first eggs and we argue that this is in line with sex allocation theory. We next analyzed treatment effects on follicle formation, yolk mass, and yolk hormones, the latter both pre- and post-ovulatory, in order to test a diversity of potential mechanisms related to both primary and secondary sex ratio manipulation. We conclude that maternal plasma hormone levels may affect several pre- ovulatory mechanisms affecting primary sex ratio, whereas egg hormones are probably involved in secondary sex ratio manipulation only.</p

    Современные представления о НСV−инфекции

    Get PDF
    Рассмотрены достижения в изучении этиологии, патогенеза и клиники НСV−инфекции. Описаны современные возможности лабораторной и инструментальной диагностики заболевания, основные принципы лечения в зависимости от тяжести течения и активности патологического процесса в печени.The achievements in the study of the etiology, pathogenesis and clinical manifestations of HCV infection are discussed. Contemporary capabilities of laboratory and instrumental diagnosis of the disease as well as main principles of treatment depending on the severity of the course and activity of the pathological process in the liver are described

    Measuring Endogenous Corticosterone in Laboratory Mice - a Mapping Review, Meta-Analysis, and Open Source Database

    Get PDF
    Evaluating stress in laboratory animals is a key principle in animal welfare. Measuring corticosterone is a common method to assess stress in laboratory mice. There are, however, numerous methods to measure glucocorticoids with differences in sample matrix (e.g., plasma, urine) and quantification techniques (e.g., enzyme immunoassay or radioimmunoassay). Here, the authors present a mapping review and a searchable database, giving a complete overview of all studies measuring endogenous corticosterone in mice up to February 2018. For each study, information was recorded regarding mouse strain and sex; corticosterone sample matrix and quantification technique; and whether the study covered the research theme animal welfare, neuroscience, stress, inflammation, or pain (the themes of specific interest in our consortium). Using all database entries for the year 2012, an exploratory meta-regression was performed to determine the effect of predictors on basal corticosterone concentrations. Seventy-five studies were included using the predictors sex, time-since-lights-on, sample matrix, quantification technique, age of the mice, and type of control. Sex, time-since-lights-on, and type of control significantly affected basal corticosterone concentrations. The resulting database can be used, inter alia, for preventing unnecessary duplication of experiments, identifying knowledge gaps, and standardizing or heterogenizing methodologies. These results will help plan more efficient and valid experiments in the future and can answer new questions in silico using meta-analyses

    Early-life interventions to prevent feather pecking and reduce fearfulness in laying hens

    Get PDF
    Severe feather pecking, the pulling out of feathers of conspecifics, is a major welfare issue in laying hens. Possible underlying causes are fearfulness and lack of foraging opportunities. Because early life is a crucial stage in behavioral development, adapting the incubation and rearing environment to the birds' needs may reduce fearfulness and prevent the development of feather pecking. In a 2 × 2 factorial design study, we investigated whether a green light-dark cycle throughout incubation, which resembles natural incubation circumstances more than the standard dark incubation, and foraging enrichment with live larvae during rearing reduce fearfulness and feather pecking and increase foraging behavior of laying hen pullets from an early age onwards. In this 2-batch experiment, 1,100 ISA Brown eggs were incubated under either 0 h of light/24 h of darkness or 12 h of green LED light/12 h of darkness. After hatching, 400 female chicks (200 per batch) were housed in 44 pens (8–10 chicks per pen). During the entire rearing phase (0–17 wk of age), half of the pens received black soldier fly larvae in a food puzzle as foraging enrichment. We assessed fear of novel objects and humans, feather pecking, plumage condition, foraging behavior, and recovery time after a 3-fold vaccination (acute stressor). A slight increase in the number of foraging bouts was only seen with larvae provisioning (rate ratio 1.19, 95% CI 1.02–1.29, P = 0.008). Neither lighted incubation nor larvae provisioning affected fearfulness, feather pecking, plumage condition or recovery time after vaccination. In conclusion, the present study showed no effects of light during incubation and minor effects of foraging enrichment during rearing on the behavior of laying hen pullets. Further research is recommended on other welfare aspects

    No evidence for selective follicle abortion underlying primary sex ratio adjustment in pigeons

    Get PDF
    Primary sex ratio adjustment in birds has been extensively studied, yet the underlying physiological mechanisms are far from understood. Avian females are the heterogametic sex (ZW), and the future sex of the offspring is determined at chromosome segregation during meiosis I, shortly before the oocyte is ovulated. Assuming that the mother can detect the sex of the developing oocyte before ovulation, it has been suggested that a follicle of the un-preferred sex could selectively be induced to become atretic and regress instead of being ovulated (selective follicle abortion). This potential mechanism has been proposed to underlie biased primary sex ratios in birds, including the homing pigeon (Columba livia domestica), which produces a modal clutch size of two eggs. However, without replacement by an additional, already mature follicle, abortion of a preovulatory follicle would most likely result in either reduced clutch sizes or laying gaps, since a not-yet-recruited follicle still needed to undergo the whole maturation phase. In the current study we killed female pigeons, which were adjusting embryo sex of first eggs according to change in body mass. We examined ovaries for signs of follicle abortion but did not find any supporting evidence. All females produced one or two mature follicles but only two out of the 56 experimental birds produced an additional third mature follicle. Therefore, our results do not corroborate the hypothesis that pigeon mothers manipulate primary offspring sex by selectively aborting follicles of the un-preferred sex

    An adaptive annual rhythm in the sex of first pigeon eggs

    Get PDF
    When the reproductive value of male and female offspring varies differentially, parents are predicted to adjust the sex ratio of their offspring to maximize their fitness (Trivers and Willard, Science 179:90–92, 1973). Two factors have been repeatedly linked to skews in avian offspring sex ratio. First, laying date can affect offspring sex ratio when the sexes differ in age of first reproduction, such that the more slowly maturing sex is overproduced early in the season. Second, position of the egg in the laying sequence of a clutch may affect sex ratio bias since manipulating the sex of the first eggs may be least costly to the mother. We studied both factors in two non-domesticated pigeon species. Both the Wood pigeon (Columba palumbus) and the Rock pigeon (Columba livia) have long breeding seasons and lay two-egg clutches. In the field, we determined the sex of Wood pigeon nestlings. In Rock pigeons, housed in captivity outdoors, we determined embryo sex after 3 days of incubation. On the basis of their sex-specific age of first reproduction, we predicted that males, maturing at older age than females, should be produced in majority early and females later in the year. This was confirmed for both species. The bias was restricted to first eggs. Rock pigeons produced clutches throughout the year and show that the sex of the first egg followed an annual cycle. To our knowledge, this study presents the first evidence of a full annual rhythm in adaptive sex allocation in birds. We suggest that this reflects an endogenous seasonal program in primary sex ratio controlled by a preovulatory mechanism

    Differential effects of testosterone, dihydrotestosterone and estradiol on carotenoid deposition in an avian sexually selected signal

    Get PDF
    Recent studies have demonstrated that carotenoid-based traits are under the control of testosterone (T) by up-regulation of carotenoid carriers (lipoproteins) and/or tissue-specific uptake of carotenoids. T can be converted to dihydrotestosterone (DHT) and estradiol (E2), and variation in conversion rate may partly explain some contradictory findings in the literature. Moreover, most studies on the effect of T on sexual signals have focused on the male sex only, while in many species females show the same signal, albeit to a lesser extent. We studied the effects of T, DHT, and E2 treatment in male and female diamond doves Geopelia cuneata in which both sexes have an enlarged red eye ring, which is more pronounced in males. We first showed that this periorbital ring contains very high concentration of carotenoids, of which most are lutein esters. Both T and DHT were effective in enhancing hue, UV-chroma and size in both sexes, while E2 was ineffective. However, E2 dramatically increased the concentration of circulating lipoproteins. We conclude that in both sexes both color and size of the secondary sexual trait are androgen dependent. The action of androgens is independent of lipoproteins regulation. Potential mechanisms and their consequences for trade-off are discussed

    Effects of In Vivo Testosterone Manipulation on Ovarian Morphology, Follicular Development, and Follicle Yolk Testosterone in the Homing Pigeon

    No full text
    To date, our understanding of the function of testosterone in female reproductive physiology is only marginal although there are indications that testosterone is involved in modulating follicular recruitment, growth, atresia, and ovulation. Studies elevating testosterone in breeding female birds have, in most instances, found detrimental effects, such as delayed clutch initiation or decreased clutch size. In our previous study, testosterone treatment of female homing pigeons delayed clutch initiation without diminishing fecundity. In this study, we explore whether the observed effect might have been caused by testosterone influencing follicle maturation or ovulation. We implanted mature female pigeons with testosterone prior to pairing, which resulted in constant elevation of circulating testosterone concentrations within the physiological range. We killed females after they had laid the first egg and measured ovarian and follicular development. Ovarian mass and pre-hierarchical yolky follicles were not affected by the treatment; however, testosterone females produced smaller and lighter preovulatory follicles. High plasma testosterone levels at oviposition or a strong temporal increase in testosterone were negatively related to mass and diameter of second follicles. We proposed that sustained elevation of testosterone delays follicular maturation, potentially via negative feedback on the hypothalamo-pituitary-gonadal axis. Furthermore, to gain better insight into the regulation of yolk hormone acquisition, we measured testosterone concentrations in the preovulatory follicles. We found no differences between treatment groups but follicle yolk contained much higher levels of testosterone than yolk of un-incubated eggs, suggesting that hormone measurements performed after oviposition do not correctly reflect maternal allocation. J. Exp. Zool. 313A:328-338, 2010. (C) 2010 Wiley-Liss, Inc
    corecore