7 research outputs found

    Molecular composition of organic aerosols in central Amazonia: An ultra-high-resolution mass spectrometry study

    Get PDF
    The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen-and/or sulfur-containing organic species contributed up to 60% of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen-and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic-biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments. © 2016 Author(s)

    The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols

    Get PDF
    The Amazon Basin plays key roles in the carbon and water cycles, climate change, atmospheric chemistry, and biodiversity. It has already been changed significantly by human activities, and more pervasive change is expected to occur in the coming decades. It is therefore essential to establish long-term measurement sites that provide a baseline record of present-day climatic, biogeochemical, and atmospheric conditions and that will be operated over coming decades to monitor change in the Amazon region, as human perturbations increase in the future. The Amazon Tall Tower Observatory (ATTO) has been set up in a pristine rain forest region in the central Amazon Basin, about 150 km northeast of the city of Manaus. Two 80 m towers have been operated at the site since 2012, and a 325 m tower is nearing completion in mid-2015. An ecological survey including a biodiversity assessment has been conducted in the forest region surrounding the site. Measurements of micrometeorological and atmospheric chemical variables were initiated in 2012, and their range has continued to broaden over the last few years. The meteorological and micrometeorological measurements include temperature and wind profiles, precipitation, water and energy fluxes, turbulence components, soil temperature profiles and soil heat fluxes, radiation fluxes, and visibility. A tree has been instrumented to measure stem profiles of temperature, light intensity, and water content in cryptogamic covers. The trace gas measurements comprise continuous monitoring of carbon dioxide, carbon monoxide, methane, and ozone at five to eight different heights, complemented by a variety of additional species measured during intensive campaigns (e.g., VOC, NO, NO2, and OH reactivity). Aerosol optical, microphysical, and chemical measurements are being made above the canopy as well as in the canopy space. They include aerosol light scattering and absorption, fluorescence, number and volume size distributions, chemical composition, cloud condensation nuclei (CCN) concentrations, and hygroscopicity. In this paper, we discuss the scientific context of the ATTO observatory and present an overview of results from ecological, meteorological, and chemical pilot studies at the ATTO site. © Author(s) 2015

    Spatialized PM2.5 during COVID-19 pandemic in Brazil’s most populous southern city: implications for post-pandemic era

    No full text
    Brazil has experienced one of the highest COVID-19 fatality rates globally. While numerous studies have explored the potential connection between air pollution, specifically fine particulate matter (PM2.5), and the exacerbation of SARS-CoV-2 infection, the majority of this research has been conducted in foreign regions—Europe, the United States, and China—correlating generalized pollution levels with health-related scopes. In this study, our objective is to investigate the localized connection between exposure to air pollution exposure and its health implications within a specific Brazilian municipality, focusing on COVID-19 susceptibility. Our investigation involves assessing pollution levels through spatial interpolation of in situ PM2.5 measurements. A network of affordable sensors collected data across 9 regions in Curitiba, as well as its metropolitan counterpart, Araucaria. Our findings distinctly reveal a significant positive correlation (with r-values reaching up to 0.36, p-value < 0.01) between regions characterized by higher levels of pollution, particularly during the winter months (with r-values peaking at 0.40, p-value < 0.05), with both COVID-19 mortality and incidence rates. This correlation gains added significance due to the intricate interplay between urban atmospheric pollution and regional human development indices. Notably, heightened pollution aligns with industrial hubs and intensified vehicular activity. The spatial analysis performed in this study assumes a pivotal role by identifying priority regions that require targeted action post-COVID. By comprehending the localized dynamics between air pollution and its health repercussions, tailored strategies can be implemented to alleviate these effects and ensure the well-being of the public

    Biomass burning and carbon monoxide patterns in Brazil during the extreme drought years of 2005, 2010, and 2015

    No full text
    In the 21st century, severe droughts associated with climate change will increase biomass burning (BB) in Brazil caused by the human activities. Recent droughts, especially in 2005, 2010, and 2015, caused strong socioeconomic and environmental impacts. The 2015 drought considered the most severe since 1901, surpassed the 2005 and 2010 events in respect to area and duration. Herein, based on satellite data, the 2005, 2010 and 2015 drought impacts on wildfire episodes and carbon monoxide (CO) variability during the dry and the dry-to-wet transition seasons were examined. The BB occurrences in the dry season were fewer during 2015 than during 2005 (−44%) and 2010 (−47%). Contrasting, the BB events in the dry-to-wet transition season, were higher during 2015 than during 2005 (+192%) and 2010 (+332%). The BB outbreaks were concentrated in the southern and southwestern Amazon during 2005, in the Cerrado region during 2010, and mainly in the central and northern Amazon during 2015, an area normally with few fires. The CO concentration showed positive variations (up to +30%) occurred in the southern Amazon and central Brazil during the 2005 and 2010 dry seasons, and north of 20 °S during the 2015–2016 dry-to-wet transition season. The BB outbreaks and the CO emissions showed a considerable spatiotemporal variability among the droughts of 2005, 2010, and 2016, first of them driven by local conditions in the tropical North Atlantic (TNA), characterized by warm than normal sea surface waters and the other two by the El Niño occurrences. For the 2015 drought, the number of BB events remained high during the dry-to-wet transition season and affected northern regions where fires are normally few. © 2018 Elsevier Lt

    Observations of atmospheric monoaromatic hydrocarbons at urban, semi-urban and forest environments in the Amazon region

    No full text
    The Amazon region is one of the most significant natural ecosystems on the planet. Of special interest as a major study area is the interface between the forest and Manaus city, a state capital in Brazil embedded in the heart of the Amazon forest. In view of the interactions between natural and anthropogenic processes, an integrated experiment was conducted measuring the concentrations of the volatile organic compounds (VOCs) benzene, toluene, ethylbenzene and meta, ortho, para-xylene (known as BTEX), all of them regarded as pollutants with harmful effects on human health and vegetation and acting also as important precursors of tropospheric ozone. Furthermore, these compounds also take part in the formation of secondary organic aerosols, which can influence the pattern of cloud formation, and thus the regional water cycle and climate. The samples were collected in 2012/2013 at three different sites: (i) The Amazon Tall Tower Observatory (ATTO), a pristine rain forest region in the central Amazon Basin; (ii) Manacapuru, a semi-urban site located southwest and downwind of Manaus as a preview of the Green Ocean Amazon Experiment (GoAmazon 2014/15); and (iii) the city of Manaus (distributed over three sites). Results indicate that there is an increase in pollutant concentrations with increasing proximity to urban areas. For instance, the benzene concentration ranges were 0.237-19.6 (Manaus), 0.036-0.948 (Manacapuru) and 0.018-0.313 μg m-3 (ATTO). Toluene ranges were 0.700-832 (Manaus), 0.091-2.75 μg m-3 (Manacapuru) and 0.011-4.93 (ATTO). For ethylbenzene, they were 0.165-447 (Manaus), 0.018-1.20 μg m-3 (Manacapuru) and 0.047-0.401 (ATTO). Some indication was found for toluene to be released from the forest. No significant difference was found between the BTEX levels measured in the dry season and the wet seasons. Furthermore, it was observed that, in general, the city of Manaus seems to be less impacted by these pollutants than other cities in Brazil and in other countries, near the coastline or on the continent. A risk analysis for the health of Manaus' population was performed and indicated that the measured concentrations posed a risk for development of chronic diseases and cancer for the population of Manaus. © 2015 Elsevier Ltd

    A new strategy for risk assessment of PM2.5-bound elements by considering the influence of wind regimes

    No full text
    For regulatory purposes, air pollution has been reduced to management of air quality control regions (AQCR), by inventorying pollution sources and identifying the receptors significantly affected. However, beyond being source-dependent, particulate matter can be physically and chemically altered by factors and elements of climate during transport, as they act as local environmental constraints, indirectly modulating the adverse effects of particles on the environment and human health. This case study, at an industrial site in a Brazilian coastal city – Joinville, combines different methodologies to integrate atmospheric dynamics in a strategic risk assessment approach whereby the influence of different wind regimes on environmental and health risks of exposure to PM2.5-bound elements, are analysed. Although Joinville AQCR has been prone to stagnation/recirculation events, distinctly different horizontal wind circulation patterns indicate two airsheds within the region. The two sampling sites mirrored these two conditions and as a result we report different PM2.5 mass concentrations, chemical profiles, geo-accumulation, and ecological and human health risks. In addition, feedback mechanisms between the airsheds seem to aggravate the air quality and its effects even under good ventilation conditions. Recognizably, the risks associated with Co, Pb, Cu, Ni, Mn, and Zn loadings were extremely high for the environment as well as being the main contributors to elevated non-carcinogenic risks. Meanwhile, higher carcinogenic risks occurred during stagnation/recirculation conditions, with Cr as the major threat. These results highlight the importance of integrating local airshed characteristics into the risk assessment of PM2.5-bound elements since they can aggravate air pollution leading to different risks at a granular scale. This new approach to risk assessment can be employed in any city's longer-term development plan since it provides public authorities with a strategic perspective on incorporating environmental constraints into urban growth planning and development zoning regulations

    Observations of particulate matter, NO2, SO2, O3, H2S and selected VOCs at a semi-urban environment in the Amazon region

    No full text
    This research aims to assess air quality in a transitional location between city and forest in the Amazon region. Located downwind of the Manaus metropolitan region, this study is part of the large-scale experiment GoAmazon2014/5. Based on their pollutant potential, inhalable particulate matter (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), hydrogen sulfide (H2S), benzene, toluene, ethylbenzene and meta-, orto-, para-xylene (BTEX) were selected for analysis. Sampling took place during the wet season (March–April 2014) and dry season (August–October 2014). The number of forest fires in the surroundings was higher during the dry wet season. Results show significant increase during the dry season in mass concentration (wet: &lt;0.01–10 μg m−3; dry: 9.8–69 μg m−3), NH4 + soluble content (wet: 13–125 μg m−3; dry: 86–323 μg m−3) and K+ soluble content (wet: 11–168 μg m−3; dry 60–356 μg m−3) of the PM2.5, and O3 levels (wet: 1.4–14 μg m−3; dry: 1.0–40 μg m−3), indicating influence of biomass burning emissions. BTEX concentrations were low in both periods, but also increased during the dry season. A weak correlation in the time series of the organic and inorganic gaseous pollutants indicates a combination of different sources in both seasons and NO2 results suggest a spatial heterogeneity in gaseous pollutants levels beyond initial expectations. © 201
    corecore