81 research outputs found

    Peptide-siRNA nanocomplexes targeting NF-κB subunit p65 suppress nascent experimental arthritis

    Get PDF
    The NF-κB signaling pathway is implicated in various inflammatory diseases, including rheumatoid arthritis (RA); therefore, inhibition of this pathway has the potential to ameliorate an array of inflammatory diseases. Given that NF-κB signaling is critical for many immune cell functions, systemic blockade of this pathway may lead to detrimental side effects. siRNAs coupled with a safe and effective delivery nanoplatform may afford the specificity lacking in systemic administration of small-molecule inhibitors. Here we demonstrated that a melittin-derived cationic amphipathic peptide combined with siRNA targeting the p65 subunit of NF-κB (p5RHH-p65) noncovalently self-assemble into stable nanocomplexes that home to the inflamed joints in a murine model of RA. Specifically, administration of p5RHH-p65 siRNA nanocomplexes abrogated inflammatory cytokine expression and cellular influx into the joints, protected against bone erosions, and preserved cartilage integrity. The p5RHH-p65 siRNA nanocomplexes potently suppressed early inflammatory arthritis without affecting p65 expression in off-target organs or eliciting a humoral response after serial injections. These data suggest that this self-assembling, largely nontoxic platform may have broad utility for the specific delivery of siRNA to target and limit inflammatory processes for the treatment of a variety of diseases

    The Role of the Mucus Barrier in Digestion

    Get PDF
    Mucus forms a protective layer across a variety of epithelial surfaces. In the gastrointestinal (GI) tract, the barrier has to permit the uptake of nutrients, while excluding potential hazards, such as pathogenic bacteria. In this short review article, we look at recent literature on the structure, location, and properties of the mammalian intestinal secreted mucins and the mucus layer they form over a wide range of length scales. In particular, we look at the structure of the gel-forming glycoprotein MUC2, the primary intestinal secreted mucin, and the influence this has on the properties of the mucus layer. We show that, even at the level of the protein backbone, MUC2 is highly heterogeneous and that this is reflected in the networks it forms. It is evident that a combination of charge and pore size determines what can diffuse through the layer to the underlying gut epithelium. This information is important for the targeted delivery of bioactive molecules, including nutrients and pharmaceuticals, and for understanding how GI health is maintained

    2,4-Diaminopyrimidines as Potent Inhibitors of Trypanosoma brucei and Identification of Molecular Targets by a Chemical Proteomics Approach

    Get PDF
    The protozoan parasite Trypanosoma brucei is the causative agent of human African trypanosomiasis (HAT) or sleeping sickness, a fatal disease affecting nearly half a million people in sub-Saharan Africa. Current treatments for HAT have very poor safety profiles and are difficult to administer. There is an urgent need for new, safe and effective treatments for sleeping sickness. This work describes the discovery of 2,4-diaminopyrimidines, exemplified by 4-[4-amino-5-(2-methoxy-benzoyl)-pyrimidin-2-ylamino]-piperidine-1-carboxylic acid phenylamide or SCYX-5070, as potent inhibitors of T. brucei growth in vitro and also in animal models for HAT. To determine the parasite proteins responsible for interaction with SCYX-5070 and related compounds, affinity pull-downs were performed followed by sequence analysis and parasite genome database searching. The work revealed that mitogen-activated protein kinases (MAPKs) and cdc2-related kinases (CRKs) are the major proteins specifically bound to the immobilized compound, suggesting their potential participation in the pharmacological effects of 2,4-diaminopyrimidines against trypanosomatid protozoan parasites. These data strongly support the use of 2,4-diminipyrimidines as leads for the development of new drug candidates for the treatment of HAT

    Investigating the role of c-Jun N-terminal kinases in the proliferation of Werner syndrome fibroblasts using diaminopyridine inhibitors

    Get PDF
    Fibroblasts derived from the progeroid Werner syndrome show reduced replicative lifespan and a "stressed" morphology, both alleviated using the MAP kinase inhibitor SB203580. However, interpretation of these data is problematical because although SB203580 has the stress-activated kinases p38 and JNK1/2 as its preferred targets, it does show relatively low overall kinase selectivity. Several lines of data support a role for both p38 and JNK1/2 activation in the control of cellular proliferation and also the pathology of diseases of ageing, including type II diabetes, diseases to which Werner Syndrome individuals are prone, thus making the use of JNK inhibitors attractive as possible therapeutics. We have thus tested the effects of the widely used JNK inhibitor SP600125 on the proliferation and morphology of WS cells. In addition we synthesised and tested two recently described aminopyridine based inhibitors. SP600125 treatment resulted in the cessation of proliferation of WS cells and resulted in a senescent-like cellular phenotype that does not appear to be related to the inhibition of JNK1/2. In contrast, use of the more selective aminopyridine CMPD 6o at concentrations that fully inhibit JNK1/2 had a positive effect on cellular proliferation of immortalised WS cells, but no effect on the replicative lifespan of primary WS fibroblasts. In addition, CMPD 6o corrected the stressed WS cellular morphology. The aminopyridine CMPD 6r, however, had little effect on WS cells. CMDP 6o was also found to be a weak inhibitor of MK2, which may partially explain its effects on WS cells, since MK2 is known to be involved in regulating cellular morphology via HSP27 phosphorylation, and is thought to play a role in cell cycle arrest. These data suggest that total JNK1/2 activity does not play a substantial role in the proliferation control in WS cells

    Cloning, annotation and developmental expression of the chicken intestinal MUC2 gene

    Get PDF
    Intestinal mucin 2 (MUC2) encodes a heavily glycosylated, gel-forming mucin, which creates an important protective mucosal layer along the gastrointestinal tract in humans and other species. This first line of defense guards against attacks from microorganisms and is integral to the innate immune system. As a first step towards characterizing the innate immune response of MUC2 in different species, we report the cloning of a full-length, 11,359 bp chicken MUC2cDNA, and describe the genomic organization and functional annotation of this complex, 74.5 kb locus. MUC2 contains 64 exons and demonstrates distinct spatiotemporal expression profiles throughout development in the gastrointestinal tract; expression increases with gestational age and from anterior to posterior along the gut. The chicken protein has a similar domain organization as the human orthologue, with a signal peptide and several von Willebrand domains in the N-terminus and the characteristic cystine knot at the C-terminus. The PTS domain of the chicken MUC2 protein spans ~1600 amino acids and is interspersed with four CysD motifs. However, the PTS domain in the chicken diverges significantly from the human orthologue; although the chicken domain is shorter, the repetitive unit is 69 amino acids in length, which is three times longer than the human. The amino acid composition shows very little similarity to the human motif, which potentially contributes to differences in the innate immune response between species, as glycosylation across this rapidly evolving domain provides much of the musical barrier. Future studies of the function of MUC2 in the innate immune response system in chicken could provide an important model organism to increase our understanding of the biological significance of MUC2 in host defense and highlight the potential of the chicken for creating new immune-based therapies
    corecore