21 research outputs found

    ParB deficiency in Pseudomonas aeruginosa destabilizes the partner protein ParA and affects a variety of physiological parameters

    Get PDF
    Deletions leading to complete or partial removal of ParB were introduced into the Pseudomonas aeruginosa chromosome. Fluorescence microscopy of fixed cells showed that ParB mutants lacking the C-terminal domain or HTH motif formed multiple, less intense foci scattered irregularly, in contrast to the one to four ParB foci per cell symmetrically distributed in wild-type P. aeruginosa. All parB mutations affected both bacterial growth and swarming and swimming motilities, and increased the production of anucleate cells. Similar effects were observed after inactivation of parA of P. aeruginosa. As complete loss of ParA destabilized its partner ParB it was unclear deficiency of which protein is responsible for the mutant phenotypes. Analysis of four parB mutants showed that complete loss of ParB destabilized ParA whereas three mutants that retained the N-terminal 90 aa of ParB did not. As all four parB mutants demonstrate the same defects it can be concluded that either ParB, or ParA and ParB in combination, plays an important role in nucleoid distribution, growth and motility in P. aeruginosa

    Vaccination de l'enfant voyageur en zone tropicale (vaccins d'aujourd'hui et perspectives)

    No full text
    TOULOUSE3-BU Santé-Centrale (315552105) / SudocSudocFranceF

    Binding and Spreading of ParB on DNA Determine Its Biological Function in Pseudomonas aeruginosa▿†

    Get PDF
    ParB protein of Pseudomonas aeruginosa belongs to a widely represented ParB family of chromosomally and plasmid-encoded partitioning type IA proteins. Ten putative parS sites are dispersed in the P. aeruginosa chromosome, with eight of them localizing in the oriC domain. After binding to parS, ParB spreads on the DNA, causing transcriptional silencing of nearby genes (A. A. Bartosik et al., J. Bacteriol. 186:6983–6998, 2004). We have studied ParB derivatives impaired in spreading either due to loss of DNA-binding ability or oligomerization. We defined specific determinants outside of the helix-turn-helix motif responsible for DNA binding. Analysis confirmed the localization of the main dimerization domain in the C terminus of ParB but also mapped another self-interactive domain in the N-terminal domain. Reverse genetics were used to introduce five parB alleles impaired in spreading into the P. aeruginosa chromosome. The single amino acid substitutions in ParB causing a defect in oligomerization but not in DNA binding caused a chromosome segregation defect, slowed the growth rate, and impaired motilities, similarly to the pleiotropic phenotype of parB-null mutants, indicating that the ability to spread is vital for ParB function in the cell. The toxicity of ParB overproduction in Pseudomonas spp. is not due to the spreading since several ParB derivatives defective in oligomerization were still toxic for P. aeruginosa when provided in excess
    corecore