490 research outputs found

    Decoherence without dissipation?

    Full text link
    In a recent article, Ford, Lewis and O'Connell (PRA 64, 032101 (2001)) discuss a thought experiment in which a Brownian particle is subjected to a double-slit measurement. Analyzing the decay of the emerging interference pattern, they derive a decoherence rate that is much faster than previous results and even persists in the limit of vanishing dissipation. This result is based on the definition of a certain attenuation factor, which they analyze for short times. In this note, we point out that this attenuation factor captures the physics of decoherence only for times larger than a certain time t_mix, which is the time it takes until the two emerging wave packets begin to overlap. Therefore, the strategy of Ford et al of extracting the decoherence time from the regime t < t_mix is in our opinion not meaningful. If one analyzes the attenuation factor for t > t_mix, one recovers familiar behaviour for the decoherence time; in particular, no decoherence is seen in the absence of dissipation. The latter conclusion is confirmed with a simple calculation of the off-diagonal elements of the reduced density matrix.Comment: 8 pages, 4 figure

    Leaf litter breakdown budgets in streams of various trophic status: effects of dissolved inorganic nutrients on microorganisms and invertebrates

    Get PDF
    1. We investigated the effect of trophic status on the organic matter budget in freshwater ecosystems. During leaf litter breakdown, the relative contribution of the functional groups and the quantity/quality of organic matter available to higher trophic levels are expected to be modified by the anthropogenic release of nutrients. 2. Carbon budgets were established during the breakdown of alder leaves enclosed in coarse mesh bags and submerged in six streams: two oligotrophic, one mesotrophic, two eutrophic and one hypertrophic streams. Nitrate concentrations were 4.5–6.7 mg L−1 and the trophic status of each stream was defined by the soluble reactive phosphorus concentration ranging from 3.4 (oligotrophic) to 89 μg L−1 (hypertrophic). An ammonium gradient paralleled the phosphate gradient with mean concentrations ranging from 1.4 to 560 μg L−1 NH4-N. The corresponding unionised ammonia concentrations ranged from 0.08 to 19 μg L−1 NH3-N over the six streams. 3. The dominant shredder taxa were different in the oligo-, meso- and eutrophic streams. No shredders were observed in the hypertrophic stream. These changes may be accounted for by the gradual increase in the concentration of ammonia over the six streams. The shredder biomass dramatically decreased in eu- and hypertrophic streams compared with oligo- and mesotrophic. 4. Fungal biomass increased threefold from the most oligotrophic to the less eutrophic stream and decreased in the most eutrophic and the hypertrophic. Bacterial biomass increased twofold from the most oligotrophic to the hypertrophic stream. Along the trophic gradient, the microbial CO2 production followed that of microbial biomass whereas the microbial fine particulate organic matter and net dissolved organic carbon (DOC) did not consistently vary. These results indicate that the microorganisms utilised the substrate and the DOC differently in streams of various trophic statuses. 5. In streams receiving various anthropogenic inputs, the relative contribution of the functional groups to leaf mass loss varied extensively as a result of stimulation and the deleterious effects of dissolved inorganic compounds. The quality/quantity of the organic matter produced by microorganisms slightly varied, as they use DOC from stream water instead of the substrate they decompose in streams of higher trophic status

    Phase distortions of attosecond pulses produced by resonance-enhanced high harmonic generation

    Get PDF
    Resonant enhancement of high harmonic generation can be obtained in plasmas containing ions with strong radiative transitions resonant with harmonic orders. The mechanism for this enhancement is still debated. We perform the first temporal characterization of the attosecond emission from a tin plasma under near-resonant conditions for two different resonance detunings. We show that the resonance considerably changes the relative phase of neighbouring harmonics. For very small detunings, their phase locking may even be lost, evidencing strong phase distortions in the emission process and a modified attosecond structure. These features are well reproduced by our simulations, allowing their interpretation in terms of the phase of the recombination dipole moment

    Korn's second inequality and geometric rigidity with mixed growth conditions

    Full text link
    Geometric rigidity states that a gradient field which is LpL^p-close to the set of proper rotations is necessarily LpL^p-close to a fixed rotation, and is one key estimate in nonlinear elasticity. In several applications, as for example in the theory of plasticity, energy densities with mixed growth appear. We show here that geometric rigidity holds also in Lp+LqL^p+L^q and in Lp,qL^{p,q} interpolation spaces. As a first step we prove the corresponding linear inequality, which generalizes Korn's inequality to these spaces

    A 15-month survey of Dimethylsulfoniopropionate and Dimethylsulfoxide content in Posidonia oceanica

    Get PDF
    Posidonia oceanica is the only reported seagrass to produce significant amount of dimethylsulfoniopropionate (DMSP). It is also the largest known producer of DMSP among coastal and inter-tidal higher plants. Here, we studied (i) the weekly to seasonal variability and the depth variability of DMSP and its related compound dimethylsulfoxide (DMSO) in P. oceanica leaves of a non-disturbed meadow in Corsica, France, (ii) the weekly to seasonal variability and the depth variability of DMSP to DMSO concentration to assess the potential of the DMSP:DMSO ratio as indicator of stress, and (iii) the relationships between DMSP, DMSO, and the DMSP:DMSO ratio with potential explanatory variables such as light, temperature, photosynthetic activity (effective quantum yield of photosystem II), and leaf size. The overall average concentrations of organosulfured compounds in P. oceanica leaves were 130 ± 39 µmol.g−1 fw for DMSP and 4.9 ± 2.1 µmol.g−1 fw for DMSO. Concentrations of DMSP and DMSO in P. oceanica were overall distinctly higher and exhibited a wider range of variations than other marine primary producers such as Spartina alterniflora, phytoplankton communities, epilithic Cyanobacteria and macroalgae. Concentrations of both DMSP and DMSO in P. oceanica leaves decreased from a maximum in autumn to a minimum in summer; they changed little with depth. Potential explanatory variables except the leaf size, i.e., the leaf age were little or not related to measured concentrations. To explain the seasonal pattern of decreasing concentrations with leaf aging, we hypothesized two putative protection functions of DMSP in young leaves: antioxidant against reactive oxygen species and predator-deterrent. The similar variation of the two molecule concentrations over time and with depth suggested that DMSO content in P. oceanica leaves results from oxidation of DMSP. The DMSP:DMSO ratio remained constant around a mean value of 29.2 ± 9.0 µmol:µmol for the non-disturbed harvested meadow regardless of the time of the year, the depth or the leaf size. As suggested for the salt march plant S. alterniflora, we hypothesized the DMSP:DMSO ratio could be considered as indicator of stress in seagrasses exposed to environmental or anthropogenic stressors. More research would now be needed to confirm the functions of DMSP and DMSO in seagrasses and how the DMSP:DMSO ratio will vary under various disturbances.FCT: 57/2016, UID/Multi/04326/2019.info:eu-repo/semantics/publishedVersio

    Dissociable effects of 5-HT2C receptor antagonism and genetic inactivation on perseverance and learned non-reward in an egocentric spatial reversal task

    Get PDF
    Cognitive flexibility can be assessed in reversal learning tests, which are sensitive to modulation of 5-HT2C receptor (5-HT2CR) function. Successful performance in these tests depends on at least two dissociable cognitive mechanisms which may separately dissipate associations of previous positive and negative valence. The first is opposed by perseverance and the second by learned non-reward. The current experiments explored the effect of reducing function of the 5-HT2CR on the cognitive mechanisms underlying egocentric reversal learning in the mouse. Experiment 1 used the 5-HT2CR antagonist SB242084 (0.5 mg/kg) in a between-groups serial design and Experiment 2 used 5-HT2CR KO mice in a repeated measures design. Animals initially learned to discriminate between two egocentric turning directions, only one of which was food rewarded (denoted CS+, CS−), in a T- or Y-maze configuration. This was followed by three conditions; (1) Full reversal, where contingencies reversed; (2) Perseverance, where the previous CS+ became CS− and the previous CS− was replaced by a novel CS+; (3) Learned non-reward, where the previous CS− became CS+ and the previous CS+ was replaced by a novel CS-. SB242084 reduced perseverance, observed as a decrease in trials and incorrect responses to criterion, but increased learned non-reward, observed as an increase in trials to criterion. In contrast, 5-HT2CR KO mice showed increased perseverance. 5-HT2CR KO mice also showed retarded egocentric discrimination learning. Neither manipulation of 5-HT2CR function affected performance in the full reversal test. These results are unlikely to be accounted for by increased novelty attraction, as SB242084 failed to affect performance in an unrewarded novelty task. In conclusion, acute 5-HT2CR antagonism and constitutive loss of the 5-HT2CR have opposing effects on perseverance in egocentric reversal learning in mice. It is likely that this difference reflects the broader impact of 5HT2CR loss on the development and maintenance of cognitive function

    Simple and Rapid Voltammetric Method Using a Gold Microwire Electrode to Measure Inorganic Arsenic in Holopelagic <i>Sargassum</i> (Fucales, Phaeophyceae)

    Get PDF
    The valorization of massive strandings of holopelagic Sargassum spp. is strongly limited by high levels of inorganic arsenic (Asi) that are potentially above the limit of current regulations. Monitoring Asi in algal biomass is currently achieved using standard chromatographic separation followed by spectroscopic detection. Here, we propose an alternative simpler procedure based on the extraction of Asi from the freeze-dried algal powder in deionized water and the electroanalytical detection of the diluted extract at a gold-microwire electrode. The protocol was optimized both in terms of extraction (powder/water ratio, extraction time, temperature) and electrolyte used for the voltammetric detection. Two electrolytes were tested: one composed of citric acid, sulfamic acid and KCl (pH 2.0) and another composed of an acetate buffer (pH 4.7) and NaCl. We demonstrate here that Asi determination is possible with the first electrolyte but it is necessary to deal with a relative unstable signal. Measurement of Asi was best achieved with the second electrolyte (acetate buffer and NaCl) with the following optimized electrochemical conditions: deposition potential of −1.2 V, deposition time of 30 seconds and linear scan voltammetry. Voltammetric results were then compared to a reference method (HPLC-ICP-MS) using different morphotypes of holopelagic Sargassum spp. (S. natans VIII, S. natans I and S. fluitans III), using commercial extracts of brown seaweeds and using a Hijiki certified reference material. Very good agreement was obtained between our novel method and HPLC-ICP-MS. Both methods show that inorganic arsenic is almost entirely present as As(V) in Sargassum spp. extracts

    Stress response to trace elements mixture of different embryo-larval stages of Paracentrotus lividus

    Full text link
    peer reviewedThis study investigated for the first time the oxidative biomarkers responses in all larval stages of sea urchin. The contamination effects were reproduced by using contaminated seawater to concentrations measured in the area adjacent to an old asbestos mine at factors of 5 and 10. The results suggested that the concentrations were not sufficiently high to induce a major oxidative stress. The biometric differences make this method a more sensitive approach for assessing the effects on sea urchin larvae. Measurements of specific activities of antioxidant enzymes at each stage suggested a high capacity of the larvae to respond to oxidative stress. This normal activity of the organism must be considered in future research. This work also highlighted the importance of spawners provenance in ecotoxicological studies. These data are essential to better understand the stress responses of sea urchin larvae and provide baseline information for later environmental assessment research

    Modulation of the Arginase Pathway in the Context of Microbial Pathogenesis: A Metabolic Enzyme Moonlighting as an Immune Modulator

    Get PDF
    Arginine is a crucial amino acid that serves to modulate the cellular immune response during infection. Arginine is also a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The generation of nitric oxide from arginine is responsible for efficient immune response and cytotoxicity of host cells to kill the invading pathogens. On the other hand, the conversion of arginine to ornithine and urea via the arginase pathway can support the growth of bacterial and parasitic pathogens. The competition between iNOS and arginase for arginine can thus contribute to the outcome of several parasitic and bacterial infections. There are two isoforms of vertebrate arginase, both of which catalyze the conversion of arginine to ornithine and urea, but they differ with regard to tissue distribution and subcellular localization. In the case of infection with Mycobacterium, Leishmania, Trypanosoma, Helicobacter, Schistosoma, and Salmonella spp., arginase isoforms have been shown to modulate the pathology of infection by various means. Despite the existence of a considerable body of evidence about mammalian arginine metabolism and its role in immunology, the critical choice to divert the host arginine pool by pathogenic organisms as a survival strategy is still a mystery in infection biology
    corecore