396 research outputs found

    (N-heterocyclic carbene)2-Pd(0) catalyzed silaboration of internal and terminal alkynes: scope and mechanistic studies

    Get PDF
    Pd(ITMe)2(PhC≡CPh) acts as a highly reactive precatalyst in the silaboration of terminal and internal alkynes to yield a number of known and novel 1-silyl-2-boryl alkenes. Unprecedented mild reaction temperatures for terminal alkynes, short reaction times, and low catalytic loadings are reported. During mechanistic studies, cis-Pd(ITMe)2(SiMe2Ph)(Bpin) was directly synthesized by oxidative addition of PhMe2SiBpin to Pd(ITMe)2(PhC≡CPh). This represents a very rare example of a (silyl)(boryl)palladium complex. A plausible catalyst decomposition route was also examined

    Promoted Thermal Reduction of Copper Oxide Surfaces by N-Heterocyclic Carbenes

    Get PDF
    The influence of metallic and oxide phases coexisting on surfaces is of fundamental importance in heterogeneous catalysis. Many reactions lead to the reduction of the oxidized areas, but the elucidation of the mechanisms driving these processes is often challenging. In addition, intermediate species or designed organic ligands increase the complexity of the surface. In the present study, we address the thermal reduction of a copper oxide overlayer grown on Cu(111) in the presence of N-heterocyclic carbene (NHC) ligands by means of scanning tunneling microscopy (STM) and density functional theory (DFT). We show that the NHC ligands actively participate in the copper oxide reduction, promoting its removal at temperatures as low as 470 K. The reduction of the oxide was tracked by employing scanning tunneling spectroscopy (STS), providing a chemical identification of metallic and oxide areas at the nanometric scale

    Growth of N-Heterocyclic Carbene Assemblies on Cu(100) and Cu(111): from Single Molecules to Magic-Number Islands

    Get PDF
    N-Heterocyclic carbenes (NHCs) have superior properties as building blocks of self-assembled monolayers (SAMs). Understanding the influence of the substrate in the molecular arrangement is a fundamental step before employing these ligands in technological applications. Herein, we study the molecular arrangement of a model NHC on Cu(100) and Cu(111). While mostly disordered phases appear on Cu(100), on Cu(111) well-defined structures are formed, evolving from magic-number islands to molecular ribbons with coverage. This work presents the first example of magic-number islands formed by NHC assemblies on flat surfaces. Intermolecular interactions, diffusion and commensurability are key factors explaining the observed arrangements. These results shed light on the molecule-substrate interaction and open the possibility of tuning nanopatterned structures based on NHC assemblies

    Covalent Adsorption of N-Heterocyclic Carbenes on a Copper Oxide Surface

    Get PDF
    Tuning the properties of oxide surfaces through the adsorption of designed ligands is highly desirable for several applications, such as catalysis. N-Heterocyclic carbenes (NHCs) have been successfully employed as ligands for the modification of metallic surfaces. On the other hand, their potential as modifiers of ubiquitous oxide surfaces still needs to be developed. Here we show that a model NHC binds covalently to a copper oxide surface under UHV conditions. In particular, we report the first example of a covalent bond between NHCs and oxygen atoms from the oxide layer. This study demonstrates that NHC can also act as a strong anchor on oxide surfaces

    Growth of N-Heterocyclic Carbene Assemblies on Cu(100) and Cu(111): from Single Molecules to Magic-Number Islands

    Get PDF
    N-Heterocyclic carbenes (NHCs) have superior properties as building blocks of self-assembled monolayers (SAMs). Understanding the influence of the substrate in the molecular arrangement is a fundamental step before employing these ligands in technological applications. Herein, we study the molecular arrangement of a model NHC on Cu(100) and Cu(111). While mostly disordered phases appear on Cu(100), on Cu(111) well-defined structures are formed, evolving from magic-number islands to molecular ribbons with coverage. This work presents the first example of magic-number islands formed by NHC assemblies on flat surfaces. Intermolecular interactions, diffusion and commensurability are key factors explaining the observed arrangements. These results shed light on the molecule-substrate interaction and open the possibility of tuning nanopatterned structures based on NHC assemblies

    Electrochemical Generation of N-Heterocyclic Carbenes for Use in Synthesis and Catalysis

    Get PDF
    The electrochemical generation of N-heterocyclic carbenes (NHCs) offers a mild and selective alternative to traditional synthetic methods that usually rely on strong bases and air-sensitive materials. The use of electrons as reagents results in an efficient and clean synthesis that enables the direct use of NHCs in various applications. Herein, the use of electrogenerated NHCs in organocatalysis, synthesis and organometallic chemistry is explored

    Approaching the Gamow Window with Stored Ions : Direct Measurement of Xe 124 (p,γ) in the ESR Storage Ring

    Get PDF
    © 2019 American Physical Society. All rights reserved.We report the first measurement of low-energy proton-capture cross sections of Xe124 in a heavy-ion storage ring. Xe12454+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The Cs125 reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.Peer reviewedFinal Published versio

    Nickel-Catalyzed Carbon–Carbon Bond-Forming Reactions of Unactivated Tertiary Alkyl Halides: Suzuki Arylations

    Get PDF
    The first Suzuki cross-couplings of unactivated tertiary alkyl electrophiles are described. The method employs a readily accessible catalyst (NiBr[subscript 2]·diglyme/4,4′-di-tert-butyl-2,2′-bipyridine, both commercially available) and represents the initial example of the use of a group 10 catalyst to cross-couple unactivated tertiary electrophiles to form C–C bonds. This approach to the synthesis of all-carbon quaternary carbon centers does not suffer from isomerization of the alkyl group, in contrast with the umpolung strategy for this bond construction (cross-coupling of a tertiary alkylmetal with an aryl electrophile). Preliminary mechanistic studies are consistent with the generation of a radical intermediate along the reaction pathway.National Institute of General Medical Sciences (U.S.) (R01-GM62871)Merck Research Laboratories (Summer Fellowship
    • …
    corecore