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Abstract: The electrochemical generation of N-het-
erocyclic carbenes (NHCs) offers a mild and selective
alternative to traditional synthetic methods that
usually rely on strong bases and air-sensitive materi-
als. The use of electrons as reagents results in an
efficient and clean synthesis that enables the direct
use of NHCs in various applications. Herein, the use
of electrogenerated NHCs in organocatalysis, syn-
thesis and organometallic chemistry is explored.
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1. Introduction

Electrochemistry has recently attracted increased atten-
tion as a tool in synthetic chemistry, despite it being
discovered over a hundred years ago.[1] Electrochem-
ical methods offer a very mild and atom efficient route
to achieving selective oxidations and reductions,
avoiding the use of harsh and often toxic chemical
reducing and oxidizing agents. This often allows
complementary pathways to traditional synthetic
routes. As electrons are used as reagents, the oxidation
or reduction potential can be dialed in, allowing for a
highly selective process. A range of user-friendly
reactors, both continuous and batch, have been
developed and commercial reactors are also available,

making electrochemistry available as a versatile tool in
synthetic chemistry.[2]

Since the pioneering work on the isolation and
characterization of N-heterocyclic carbenes (NHCs) by
Arduengo,[3] Bertrand,[4] and Enders[5] 30 years ago,
NHCs have attracted considerable interest, particularly
in the area of catalysis as both organocatalysts[6] and as
ligands in metal catalysts.[7] Among other methods,
NHCs are typically synthesized from the correspond-
ing azolium salt, such as imidazolium, thiazolium and
triazolium salts, via deprotonation with base
(Scheme 1A).[6b] As structurally diverse azolium salts
can easily be prepared, this enables access to a vast
library of NHC analogues.[6g,8]

Electrochemistry has been used for the synthesis of
NHCs as a selective and mild alternative to chemical
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methods (Scheme 1B).[9] Electrochemistry enables the
in situ generation of a desired NHC concentration that
is controlled by the current and total charge transferred

into the reaction mixture. As NHCs are most often
produced chemically via base deprotonation of the
corresponding azolium salt, base sensitive groups
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within the ligand architecture are typically not toler-
ated using these synthetic methods. The electrochem-
ical synthesis of NHCs also proceeds from the
corresponding azolium salt, but in this case the
azolium is reduced to the carbene at the cathode with
hydrogen as the only by-product.[10] An electrochemi-
cally synthesized NHC is thereby referred to as
electrogenerated. The carbene can subsequently react
with a substrate or with a metal to form a reaction
product or metal complex respectively. At the anode
the product depends on the reaction system, but can be
decomposition of the solvent, oxidation of the counter-
ion, or oxidation of a sacrificial anode to release metal
ions. For example, Xiao and Johnson demonstrated
that the tetrafluoroborate counterion is degraded to BF3
and F2 gas.[11] The direct electrochemical synthesis of
metal complexes from sacrificial anodes has also been
reported.[12] Using the corresponding azolium salt as

the NHC precursor in electrochemical synthesis results
in a very clean reaction mixture as no further reactant
or electrolyte is needed, simplifying downstream
processes and purification.

Depending on the application, the electrochemical
NHC synthesis might be followed by the addition of
reagents for a subsequent synthesis. This allows the
use of substrates that are not stable under the electro-
chemical conditions, i. e. when the reduction potentials
overlap. In addition, the separation of the NHC
production and a synthesis step allows for easy
distribution of the NHC into several parallel reactor
vessels.

A typical reaction setup constitutes two electrodes
submerged into the reaction solution connected to a
power supply unit. Modification to include a reference
electrode or to separate anodic and cathodic reactions
with a membrane are possible.[1°,2a,2h] Continuous
electrochemical reactors have also been
developed.[1s–u,2i,m,20,2p]

2. Electrochemical Synthesis of NHCs
The reduction potential of NHCs is highly dependent
on the nature of the azolium salt, in addition to other
factors such as the solvent. Typical ranges are from
� 1.5 V to � 2.3 V, with the potential correlating to the
acidity of the azolium salt (Figure 1).[13] Thiazolium
salts (around � 1.5 V) are typically more easily reduced
than imidazolium salts (lower reduction potential
around � 2.2 V), as are benzannulated and saturated
azolium salts. The substituents play a minor role, with
electron rich substituents resulting in slightly higher
reduction potentials. Bis-azolium salts are easier to
reduce than their corresponding azolium salt indicating
a cooperative reduction due to the proximity of the
second azolium moiety during reduction of the first.[10]
Bis-azolium salts show only one reduction peak and
typically produce less stable bis-NHCs. The nature of
the spacer between the azolium moieties plays a
pivotal role on the stability, with a xylyl spacer
resulting in a significantly less stable carbene due to
benzylic elimination compared to aliphatic spacers.
The oxidation potential of NHCs (potential of the
reverse reaction) correlates to their nucleophilicity.[13b]
This can be observed using cyclic voltammetry and

Scheme 1. Synthesis of NHCs, A: traditional chemical methods;
B: electrochemical synthesis.[6b]

Figure 1. Typical reduction potentials for azolium salts, in V vs SCE, data from Ogawa and Boydston.[13a]
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also gives an indication of the stability of an
NHC.[13b,30d]

The electrochemical reduction of an azolium salt
was first demonstrated by Hünig and co-workers in
1973.[14] The authors synthesized a range of cyclic
bridged azolium salts, with subsequent electrochemical
ylidene formation to investigate the redox couples
using absorption spectra. This was further investigated
by Shi and Thummel using cyclic bridged imidazolium
salts. Deprotonation using a base afforded ureaphanes
(bridged imidazolones, through the NHC reacting with
oxygen) instead of the desired imidazolinylidenes.[15]
The authors propose the imidazolinylidene intermedi-
ate to be in equilibrium with the bis-NHC and
performed the electrochemical synthesis as an alter-
native access to NHCs under inert conditions. This
yielded the desired imidazolinylidenes, which slowly
degraded to the ureaphane in air (Scheme 2).

In 1994, Fuller and Carlin investigated 1,3-bis-(4-
methylphenyl) imidazolium chloride.[16] The authors
performed cyclic voltammetry on the imidazolium salt
in anhydrous THF and observed a reduction peak at
� 2.32 V vs Ag/Ag+ and two oxidation peaks at � 0.89
and � 0.54 V, which the authors attributed to the
reduction of the imidazolium salt and oxidation of one
or two resulting products. These resulting products
were unstable, as seen in the reduced intensity of the
peaks, and the authors speculated that one of the peaks
might have been a degradation product. However,

Enders later showed that some NHCs can be further
reduced to the anion, so the two observed oxidation
peaks may have been NHC and anion oxidation
(Scheme 3).[17]

2.1. Electrogenerated NHCs in Organocatalysis
NHCs have emerged as a powerful and versatile tool in
organocatalysis.[6] Due to the nucleophilic lone pair on
the carbene center, the reactivity of NHCs can be
compared to that of Lewis bases.

Most NHC-catalyzed reactions require the addition
of the NHC to either an aldehyde or an α,β-unsaturated
aldehyde, forming the Breslow intermediate and
resulting in an umpolung of the electrophile
(Scheme 4).[6c,e,18] The reverse reactivity can then be
exploited for further modifications, such as a direct
electrophilic attack before releasing the NHC.[6] Typi-
cal examples for the direct nucleophilic attack on the
Breslow intermediate are benzoin condensation and the
Stetter reaction.[6c–e,g,19]

The use of electrogenerated NHCs in synthesis and
organocatalysis has largely been dominated by the
groups of Feroci, Chiarotto and Inesi.[9,20] Many
azolium salts, depending on the N-substituents, are
liquid at room temperature and can be classified as
ionic liquids (IL). ILs have become a popular choice of
electrochemical solvent due to the high thermal
stability, non-volatility, high polarity, high intrinsic
conductivity, wide electrochemical windows and
recyclability.[9a,b,d,e,21] In addition, intermediate radicals

Scheme 2. Reduction of bridged imidazolium salt to imidazoli-
nylidenes and further oxidation to ureaphane, reported by Shi
and Thummel.[15]

Scheme 3. Reduction of Enders carbene to radical anion.[17]

Scheme 4. NHC organocatalysis via Breslow intermediate,
Benzoin condensation as an example for electrophile addition to
the Breslow intermediate.
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are often stabilized by the azolium.[9d] Feroci and co-
workers therefore perform most of their reactions in
the neat azolium salt.[20] Feroci and Inesi first demon-
strated the use of electrogenerated NHCs in organo-
catalysis in 2008 with the synthesis of β-lactams, after
already highlighting the benefits of imidazolium-based
ILs as reaction solvents in 2007.[9b,e,22] The authors first
generated the NHC electrochemically from the IL
before adding a bromoamide to the cathodic reaction
chamber. In this case the electrogenerated NHC acts as
a base to deprotonate the bromoamide, which can then
cyclize to the desired 2-azetidinone (Scheme 5).

Feroci and Inesi further demonstrated the use of
electrogenerated NHCs as bases in other applications,
for example in the Henry reaction and Staudinger
reaction.[22b,c,23] The first reported catalytic reaction
with electrogenerated NHCs was the Benzoin con-
densation (Scheme 6A).[24] Orsini et al. achieved 85%
yield of the desired product in 2 h by first producing
20 mol% of NHC electrochemically through electro-
lyzing the neat IL for the desired time and then adding
benzaldehyde as the substrate. The reaction proceeded
with a range of imidazolium salts. The authors
compared typical organic solvents used in the electro-
chemical step (MeCN, DMSO and DMF) to the neat
IL and found that the use of organic solvents
drastically decreased yields.[29] Since the first reports,
Feroci and Inesi have applied their methodology to a
range of catalytic reactions, such as the Stetter reaction
(via the Breslow intermediate, Scheme 6B),[25] Stau-
dinger reaction (organocatalytic ketene activation,
Scheme 6C),[23c,d] (trans-) esterifications including syn-
thesis of lactones (via Breslow intermediate,
Scheme 6D and E),[26–27,30] amidation (NHC mediated,
via Breslow intermediate, Scheme 6F)[28] in addition to
various other applications.[9b,c] In all cases, the NHC is
first generated electrochemically by electrolyzing the
IL for the time needed to produce the desired amount
of NHC before the next substrate is added.

2.2. Electrogenerated NHCs in Synthesis
NHCs are viable building blocks in synthesis, with the
use of electrogenerated NHCs having been demon-
strated in this area (Scheme 7). Electrogenerated NHCs

Scheme 5. Cyclization of bromoamides to 2-azetidinone catalyzed by electrogenerated NHCs.[22b,c]

Scheme 6. Catalytic and mediated applications of electrogen-
erated NHCs by Feroci and Inesi, A: Benzoin condensation as
the first example of electrocatalytic NHC use;[24] B: Stetter
reaction;[25] C: Staudinger reaction;[23c] D: synthesis of lactones
via conjugated addition to α,β-unsaturated aldehydes;[26] E:
esterification of α,β-unsaturated aldehydes with alcohols;[27] F:
amidation;[28] the moiety in red on the left of each scheme reacts
with the NHC.
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have been used to capture CO2, with subsequent
release upon heating or ultrasound irradiation.[31] Up to
ten cycles of catch and release have been demon-
strated, resulting in 4 mmol of CO2 consumed per
Faraday.[31c] In addition, the NHC-CO2 adduct is
considerably more stable than the free NHC and can
be kept in solution for days without any loss in
catalytic activity.[31b,d] Therefore, it can be seen as a
viable precursor to the free NHC (Scheme 1A).

The NHC-activated CO2 has also been used as a
building block for the synthesis of carbonates and
carbamates (Scheme 7A).[31a,e]

Imidazole-2-thiones have been synthesized from
electrogenerated NHCs and elemental sulfur
(Scheme 7B).[32] Imidazole-2-thiones can be reduced
back to the NHC, making them a common precursor
(Scheme 1). The xanthinium salt derived through
methylation of caffeine, 9-methylcaffeinium iodide,
which has a different electronic structure to imidazo-
lium salts due to the amide backbone, has been
investigated.[33] Upon electrochemical reduction, the
newly formed NHC is hydrolyzed and ring-opens to

produce the natural product hymeniacidin (Sche-
me 7C). Caffeine has also been reduced electrochemi-
cally, which results in the uracil ring-opening
(Scheme 7D).[34] N-Heterocyclic olefins (NHOs),
which are very similar to NHCs, have also been
generated with base or electrochemically
(Scheme 7E).[35] The authors showed through CV
experiments, that the electrochemical reduction occurs
similarly to the reduction to an NHC, via the C2
radical and concurrent further one electron reduction
and loss of H+. The reactivity of NHOs as a
nucleophile and base is comparable to those of NHCs,
as demonstrated in a transesterification reaction,
however NHOs are typically more stable and exhibit a
higher nucleophilicity resulting in a higher reactivity.

2.3. Electrogenerated Metal-NHC Complexes
The generation of metal-NHCs requires a metal
precursor and the NHC (Scheme 9).[36] The NHC can
be produced in situ (Scheme 8A) or isolated and the
metal precursor added to the free NHC (Scheme 8B).
The NHC is typically produced from the azolium
precursor via deprotonation with a base. Other
precursors are also feasible as shown in Scheme 1A. In
addition, transmetalation of the NHC from other metals
such as copper and silver is possible (Scheme 8C).
These methods typically produce stoichiometric by-
products from the metal precursor and the base, which
can cause problems in downstream processing, and
decomposition of the metal complex.[37] Depending on
the reaction conditions, in particular the nature of the
counterion, a neutral mono-NHC or cationic bis-NHC
complex can be formed (only mono-NHC shown in
Scheme 8).

Scheme 7. Applications of electrogenerated NHCs, A: CO2
activation for the synthesis of carbonates;[31a] B: Synthesis of
imidazole-2-thiones through ultrasound irradiation;[32a] C: Elec-
trolysis of 9-methylcaffeinium iodide;[33] D: Electrolysis of
caffeine;[34] E: Electrogeneration of NHOs.[35]

Scheme 8. Synthesis of NHC-metal complexes, A: in-situ via
base deprotonation; B: metal precursor added to free NHC after
deprotonation; C: transmetalation from silver or copper NHC-
complex.
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The direct electrochemical synthesis of metal
complexes from sacrificial anodes in a solution
containing the ligand precursor is simple and avoids
the use of other metal precursors and oxidizing agents,
which sometimes require another synthetic step.[12]
Both the metal cation and the NHC are produced
in situ. The cation is produced from the sacrificial
anode via oxidation, and the NHC is produced from
the corresponding azolium salt via reduction at the
cathode, with hydrogen as the only by-product
(Scheme 9). The NHC and metal cation then combine
to form the metal complex.

There have only been a few reports on the electro-
chemical generation of metal-NHC complexes, which
was pioneered by Chen and co-workers in 2011
(Figure 2A).[38] The authors used sacrificial anodes as
the metal source and imidazolium salts bearing N-
pyridine or N-pyrimidine substituents as NHC precur-
sors. In this manner, the authors produced 14 metal-

NHC complexes with Cu(I), Cu(II), Ni(II) and Fe(II)
and non-coordinating counterions leading to the bis-
NHC complexes. This also included bis-imidazolium
precursors leading to complexes with several metal
centers.

Our group has added a valuable extension to this
methodology using ligands that are void of pendant
donor arms and that form both cationic bis-NHC
complexes and neutral mono-NHC complexes of Cu(I),
Au(I) and Fe(II), including ligands bearing base
sensitive N-substituents (Figure 2B), and Cu(II), Zn-
(II), Fe(II), Fe(III), Mn(II) and Mn(IV) salen-
complexes.[2d,39]

Abbehausen and co-workers synthesized gold(I)-
NHC and phosphine complexes electrochemically
from the corresponding imidazolium salt or a proto-
nated trialkylphosphine and sacrificial gold electrode
(Figure 2C).[40] The authors highlight the direct and

Scheme 9. Electrochemical synthesis of metal-NHC complexes.

Figure 2. Selected examples of metal-NHC complexes synthesized electrochemically by A: Chen and co-workers;[38] B: Willans
and co-workers;[2d,39] C: Abbehausen and co-workers.[40]
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clean methodology, avoiding the use of other metal
precursors, which might contaminate the final product.

2.4. Electrochemical Reactors for Metal-NHC Com-
plexes
In addition to advancing electrochemical methods to
metal-NHCs, we have developed a series of electro-
chemical flow reactors, giving access to mild reaction
conditions and high effectivity of the process (Sche-
me 10A, B, C).[2j,41–42] The first-generation electro-
chemical flow reactor exhibits a linear channel created
by the electrodes. Glass beads were inserted into this
channel to ensure sufficient mixing and a Faradaic
efficiency of 70% was achieved (0.132 mmol in
80 min). The second-generation electrochemical flow
reactor exhibits a larger surface area to volume ratio,
by cutting the flow channel into a PTFE spacer that is
sandwiched between two electrodes. This eliminates
the need for glass beads and increases both the
Faradaic efficiency to 92% and the reaction throughput
(0.132 mmol in 30 min). The volume of the reactor can
easily be modified by stacking more or fewer electro-
des and spacers, making the reactor versatile for
different applications, reaction times and scales. The
third-generation reactor is a scaled down version of the
second-generation reactor, to enable electrochemical
screening reactions, where smaller scales are desired.
Due to the very mild and clean reaction conditions, the
reaction solution only contains the imidazolium salt
and resulting metal-NHC complex, hence the reaction

mixture could be flowed directly into a catalytic
hydrosilylation reaction with no differences in yield
compared to when the isolated and purified metal-
NHC complex was used (Scheme 10D).[2j]

2.5. Miscellaneous
Other electrochemical syntheses that involve NHCs,
but where the NHC is not necessarily produced
electrochemically, have been reported. The Breslow
intermediate can undergo an oxidation, which can be
performed electrochemically, followed by a nucleo-
philic attack. This method has been applied by Die-
derich and co-workers who developed an NHC-
mediated oxidative electrosynthesis of esters
(Scheme 11).[43] The NHC catalyst is initially base
generated rather than electrochemically, with the
electrochemical step purely being the oxidation of the
Breslow intermediate. The authors use a co-enzyme as
an electrochemical mediator. Boydston and co-workers
further developed this method by directly oxidizing the
Breslow intermediate on the anode and expanded the
substrate scope to thiols to form thioesters.[44] Brown
and co-workers developed a continuous method for the
NHC-mediated electrosynthesis of esters and expanded
the substrate scope to amines to form amides.[45] The
use of a continuous method allowed for mild con-
ditions and a high productivity due to low residence
times.

Devillers and co-workers performed a direct C� N
coupling to form azolium salts from the corresponding

Scheme 10. Electrochemical flow reactors, A: single channel first-generation electrochemical reactor;[2j] B: parallel plate second-
generation electrochemical reactor;[2j] miniaturized third-generation electrochemical reactor;[41] D: telescoped electrochemical and
catalytic hydrosilylation.[2j]
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azole and pyrene via anodic C� H activation of the
latter (Scheme 12).[46] Importantly, the authors use a
divided cell to prevent reduction of the azolium to the
NHC. This work was later continued by Yoshida and
co-workers who protected imidazoles prior to electrol-
ysis to selectively form mono-substituted imidazoles
after deprotection.[47]

Vecchio-Sadus reported the electrochemical reduc-
tion of mono-substituted imidazoles and unsubstituted
pyrazoles forming metal-imidazolate and -pyrazolate
complexes in 1995 (Scheme 13A).[48] In this case, the
azolate coordinates through the unsubstituted nitrogen
atom giving access to polymeric chelate structures.
Even though an NHC is not isolated, this was an
important step towards electrogenerated metal-com-
plexes from azoles.

Yamanaka and co-workers studied the palladium-
catalyzed electrocarbonylation of phenol on gold
anodes (Scheme 13B).[49] The NHC acts as a ligand on
the palladium catalyst and is formed in situ from the
corresponding imidazolium salt via deprotonation.

The palladium-NHC catalyst is then turned over by
electricity during the electrocarbonylation. The authors
acknowledge that the NHC could also be produced
electrochemically but do not investigate this further.

In recent work, Birss and co-workers have demon-
strated the use of an NHC decorated Au electrode for
the electrochemical detection of the measles virus.[50]
The NHC is covalently bonded to the measles anti-
body, creating a monolayer. The system is then used as
an electrochemical biosensor. The authors prepared the
Au-NHC via deprotonation of the corresponding
imidazolium salt.

The electrochemical deposition of NHCs on a metal
surface was first reported by Toste, Gross and co-
workers (Scheme 13C).[51] The NHC is generated
in situ from the corresponding imidazolium salt via
deprotonation with electrogenerated hydroxide from
water reduction.

Scheme 11. NHC-mediated electrochemical formation of esters
via anodic oxidation of the Breslow intermediate.[43]

Scheme 12. Electrochemical generation of azolium salts.[46]

Scheme 13. A: Electrochemical synthesis of polymeric imida-
zolate metal complexes;[48] B: Palladium catalyzed
electrocarbonylation;[49] C: Electrochemical deposition of NHCs
on metal surfaces;[51]
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3. Conclusion and Outlook

This review summarizes the use of electrogenerated
NHCs in organocatalysis, synthesis and organometallic
chemistry. Electrochemistry enables a very mild and
selective synthesis of NHCs. As such, it must be
considered as an important alternative to traditional
synthetic methods. Whilst being complementary to
traditional synthetic methods, we do not envisage that
electrochemical routes will fully replace chemical
methods for the synthesis of NHCs.

The use of synthetic electrochemistry on an
industrial scale has already been well established, for
example, for the production of adiponitrile.[1e,52] How-
ever, the adaption of electrochemistry on small-scale
synthetic chemistry remains challenging due to un-
familiarity with the concepts and materials and the
need of specialized equipment. Current developments
in the field of synthetic electrochemistry will allow
more chemists access to electrochemical methods. As
such, tutorials[1°,1p] and the advancement of new, user-
friendly equipment[2d,53] will catalyze the adoption of
electrochemistry as an everyday method in the
synthetic laboratory.

The electrogeneration of NHCs will therefore also
become more important, as it is a versatile, mild and
inexpensive method for a wide range of applications.
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