483 research outputs found

    Nonlinear analysis of drainage systems to examine surface deformation: an example from Potwar Plateau (Northern Pakistan)

    Get PDF
    We devise a procedure in order to characterize the relative vulnerability of the Earth's surface to tectonic deformation using the geometrical characteristics of drainage systems. The present study focuses on the nonlinear analysis of drainage networks extracted from Digital Elevation Models in order to localize areas strongly influenced by tectonics. We test this approach on the Potwar Plateau in northern Pakistan. This area is regularly affected by damaging earthquakes. Conventional studies cannot pinpoint the zones at risk, as the whole region is characterized by a sparse and diffuse seismicity. Our approach is based on the fact that rivers tend to linearize under tectonic forcing. Thus, the low fractal dimensions of the Swan, Indus and Jehlum Rivers are attributed to neotectonic activity. A detailed textural analysis is carried out to investigate the linearization, heterogeneity and connectivity of the drainage patterns. These textural aspects are quantified using the fractal dimension, as well as lacunarity and succolarity analysis. These three methods are complimentary in nature, i.e. objects with similar fractal dimensions can be distinguished further with lacunarity and/or succolarity analysis. We generate maps of fractal dimensions, lacunarity and succolarity values using a sliding window of 2.5 arc minutes by 2.5 arc minutes (2.5'×2.5'). These maps are then interpreted in terms of land surface vulnerability to tectonics. This approach allowed us to localize several zones where the drainage system is highly structurally controlled on the Potwar Plateau. The region located between Muree and Muzaffarabad is found to be prone to destructive events whereas the area westward from the Indus seems relatively unaffected. We conclude that a nonlinear analysis of the drainage system is an efficient additional tool to locate areas likely to be affected by massive destructing events affecting the Earth's surface and therefore threaten human activities

    How to identify groundwater-caused thermal anomalies in lakes based on multi-temporal satellite data in semi-arid regions

    Get PDF
    The deduction by conventional means of qualitative and quantitative information about groundwater discharge into lakes is complicated. Nevertheless, at least for semi-arid regions with limited surface water availability, this information is crucial to ensure future water availability for drinking and irrigation purposes. <br><br> Overcoming this lack of discharge information, we present a satellite-based multi-temporal sea-surface-temperature (SST) approach. It exploits the occurrence of thermal anomalies to outline groundwater discharge locations using the example of the Dead Sea. Based on a set of 19 Landsat Enhanced Thematic Mapper (ETM+) images 6.2 (high gain), recorded between 2000 and 2002, we developed a novel approach which includes (i) an objective exclusion of surface-runoff-influenced data which would otherwise lead to erroneous results and (ii) a temporal SST variability analysis based on six statistical measures amplifying thermal anomalies caused by groundwater. <br><br> After excluding data influenced by surface runoff, we concluded that spatial anomaly patterns of the standard deviation and range of the SST data series spatially fit best to in situ observed discharge locations and, hence, are most suitable for detecting groundwater discharge sites

    Influence of the definition of dissipative events on their statistics

    Full text link
    A convenient and widely used way to study the turbulent plasma in the solar corona is to do statistics of properties of events (or structures), associated with flares, that can be found in observations or in numerical simulations. Numerous papers have followed such a methodology, using different definitions of an event, but the reasons behind the choice of a particular definition (and not another one) is very rarely discussed. We give here a comprehensive set of possible event definitions starting from a one-dimensional data set such as a time-series of energy dissipation. Each definition is then applied to a time-series of energy dissipation issued from simulations of a shell-model of magnetohydrodynamic turbulence as defined in Giuliani and Carbone (1998), or from a new model of coupled shell-models designed to represent a magnetic loop in the solar corona. We obtain distributions of the peak dissipation power, total energy, duration and waiting-time associated to each definition. These distributions are then investigated and compared, and the influence of the definition of an event on statistics is discussed. In particular, power-law distributions are more likely to appear when using a threshold. The sensitivity of the distributions to the definition of an event seems also to be weaker for events found in a highly intermittent time series. Some implications on statistical results obtained from observations are discussed.Comment: 8 pages, 13 figures. Submitted to Astronomy&Astrophysic

    The Langevin diffusion as a continuous-time model of animal movement and habitat selection

    Get PDF
    TM was supported by the Centre for Advanced Biological Modelling at the University of Sheffield, funded by the Leverhulme Trust, award number DS-2014-081.1. The utilisation distribution of an animal describes the relative probability of space use. It is natural to think of it as the long-term consequence of the animal's short-term movement decisions: it is the accumulation of small displacements which, over time, gives rise to global patterns of space use. However, many estimation methods for the utilisation distribution either assume the independence of observed locations and ignore the underlying movement (e.g. kernel density estimation), or are based on simple Brownian motion movement rules (e.g. Brownian bridges). 2. We introduce a new continuous-time model of animal movement, based on the Langevin diffusion. This stochastic process has an explicit stationary distribution, conceptually analogous to the idea of the utilisation distribution, and thus provides an intuitive framework to integrate movement and space use. We model the stationary (utilisation) distribution with a resource selection function to link the movement to spatial covariates, and allow inference about habitat preferences of animals. 3. Standard approximation techniques can be used to derive the pseudo-likelihood of the Langevin diffusion movement model, and to estimate habitat preference and movement parameters from tracking data. We investigate the performance of the method on simulated data, and discuss its sensitivity to the time scale of the sampling. We present an example of its application to tracking data of Steller sea lions (Eumetopias jubatus). 4. Due to its continuous-time formulation, this method can be applied to irregular telemetry data. The movement model is specified using a habitat-dependent utilisation distribution, and it provides a rigorous framework to estimate long-term habitat selection from correlated movement data. The Langevin movement model can be approximated by linear model, which allows for very fast inference. Standard tools such as residuals can be used for model checking.PostprintPeer reviewe

    Cyanobacterial metabolites as a source of sunscreens and moisturizers: a comparison with current synthetic compounds

    Get PDF
    The recognition of the harmful effects of ultraviolet radiation on the skin has led to the commercial development of inorganic and synthetic organic UV filters that can attenuate the negative effects of sunlight exposure. In addition, chemical moisturizers are extensively used in cosmetic products to improve the ability of skin to retain water. Whilst these chemicals have clear beneficial qualities, they may also have adverse effects such as contact sensitivity, oestrogenicity and even tumorigenic effects on human skin. Furthermore, the accumulation of such chemicals in the aquatic environment could be potentially harmful. Consequently, there is interest in exploiting safer alternatives derived from biological sources, especially from photosynthetic organisms such as cyanobacteria that have developed mechanisms for coping with high UV irradiation and desiccation. In order to overcome the detrimental effects of UV radiation, these microorganisms produce UV screening compounds such as mycosporine-like amino acids and scytonemin, which are good candidates as alternatives to current synthetic UV filters. In addition, extracellular substances produced by some extremophilic species living in hyper-arid habitats have a high water retention capacity and could be used in cosmetic products as moisturizers. In this review, we present an overview of the literature describing the potential of cyanobacterial metabolites as an alternative source for sunscreens and moisturizers

    Relations between Au / Sn-W mineralizations and late hercynian granite: Preliminary results from the Schistose Domain of Galicia-Trás-os-Montes Zone, Spain

    No full text
    International audienceAu and W-Sn mineralization of the Schistose Domain of Galicia-Trás-os-Montes are spatially related to late hercynian granites. The Bruès (Au) and the Mina Soriana W-(Sn) deposits are studied. Both show some similarities and are assumed to form in the same tectonic and metamorphic context, on top of the granites. The role of the granite as a source for mineralizing fluids and rheological control for vein emplacement is re-adressed and discussed
    corecore