12 research outputs found

    A spiral scaffold underlies cytoadherent knobs in Plasmodium falciparum-infected erythrocytes

    Get PDF
    Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the three-dimensional structure of knobs in detergent-insoluble skeletons of P. falciparum 3D7 schizonts. We describe a highly organised knob skeleton composed of a spiral structure coated by an electron dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualised by high resolution freeze fracture scanning electron microscopy, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P. falciparum infection contain a highly organised skeleton structure underlying a specialised region of membrane. We propose that the spiral and dense coat organise the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    A Maurer's cleft–associated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells

    Get PDF
    The high mortality of Plasmodium falciparum malaria is the result of a parasite ligand, PfEMP1 (P. falciparum) erythrocyte membrane protein 1), on the surface of infected red blood cells (IRBCs), which adheres to the vascular endothelium and causes the sequestration of IRBCs in the microvasculature. PfEMP1 transport to the IRBC surface involves Maurer's clefts, which are parasite-derived membranous structures in the IRBC cytoplasm. Targeted gene disruption of a Maurer's cleft protein, SBP1 (skeleton-binding protein 1), prevented IRBC adhesion because of the loss of PfEMP1 expression on the IRBC surface. PfEMP1 was still present in Maurer's clefts, and the transport and localization of several other Maurer's cleft proteins were unchanged. Maurer's clefts were altered in appearance and were no longer found as close to the periphery of the IRBC. Complementation of mutant parasites with sbp1 led to the reappearance of PfEMP1 on the IRBC surface and the restoration of adhesion. Our results demonstrate that SBP1 is essential for the translocation of PfEMP1 onto the surface of IRBCs and is likely to play a pivotal role in the pathogenesis of P. falciparum malaria

    Understanding the outcomes of spiritual care as experienced by patients

    No full text
    In moving toward professionalising spiritual care in the healthcare system, as an equal partner in whole person care, it has become increasingly important to develop an evidence base for spiritual care interventions, their value and longer-term outcomes for those receiving this care. This study utilised hard copy questionnaires across five Australian general hospitals to investigate patient reported outcomes of in-patient spiritual care. The survey included the Scottish Patient Reported Outcomes Measure (PROM), measures of patient experience and an open-ended question about experience of care. Data indicated a positive correlation between positive experience of spiritual care and a high score on PROM. Qualitative data elaborated on if and how the spiritual care received met patients’ needs, the qualities they valued in the provider of this care and impacts of the care they experienced. Further development of the PROM in a variety of situations is however recommende

    An exported kinase (FIKK4.2) that mediates virulence-associated changes in Plasmodium falciparum-infected red blood cells

    No full text
    International audienceAlteration of the adhesive and mechanical properties of red blood cells caused by infection with the malaria parasite Plasmodium falciparum underpin both its survival and extreme pathogenicity. A unique family of parasite putative exported kinases, collectively called FIKK (Phenylalanine (F) - Isoleucine (I) - Lysine (K) - Lysine (K)), has recently been implicated in these pathophysiological processes, however, their precise function in P. falciparum-infected red blood cells or their likely role in malaria pathogenesis remain unknown. Here, for the first time, we demonstrate that one member of the FIKK family, FIKK4.2, can function as an active kinase and is localised in a novel and distinct compartment of the parasite-infected red blood cell which we have called K-dots. Notably, targeted disruption of the gene encoding FIKK4.2 (fikk4.2) dramatically alters the parasite's ability to modify and remodel the red blood cells in which it multiplies. Specifically, red blood cells infected with fikk4.2 knockout parasites were significantly less rigid and less adhesive when compared with red blood cells infected with normal parasites from which the transgenic clones had been derived, despite expressing similar levels of the major cytoadhesion ligand, PfEMP1, on the red blood cell surface. Notably, these changes were accompanied by dramatically altered knob-structures on infected red blood cells that play a key role in cytoadhesion which is responsible for much of the pathogenesis associated with falciparum malaria. Taken together, our data identifies FIKK4.2 as an important kinase in the pathogenesis of P. falciparum malaria and strengthens the attractiveness of FIKK kinases as targets for the development of novel next-generation anti-malaria drugs

    Functional alteration of red blood cells by a megadalton protein of Plasmodium falciparum

    No full text
    Proteins exported from Plasmodium falciparum parasites into red blood cells (RBCs) interact with the membrane skeleton and contribute to the pathogenesis of malaria. Specifically, exported proteins increase RBC membrane rigidity, decrease deformability, and increase adhesiveness, culminating in intravascular sequestration of infected RBCs (iRBCs). Pf332 is the largest (>1 MDa) known malaria protein exported to the RBC membrane, but its function has not previously been determined. To determine the role of Pf332 in iRBCs, we have engineered and analyzed transgenic parasites with Pf332 either deleted or truncated. Compared with RBCs infected with wild-type parasites, mutants lacking Pf332 were more rigid, were significantly less adhesive to CD36, and showed decreased expression of the major cytoadherence ligand, PfEMP1, on the iRBC surface. These abnormalities were associated with dramatic morphologic changes in Maurer clefts (MCs), which are membrane structures that transport malaria proteins to the RBC membrane. In contrast, RBCs infected with parasites expressing truncated forms of Pf332, although still hyperrigid, showed a normal adhesion profile and morphologically normal MCs. Our results suggest that Pf332 both modulates the level of increased RBC rigidity induced by P falciparum and plays a significant role in adhesion by assisting transport of PfEMP1 to the iRBC surface
    corecore