755 research outputs found

    Global Existence and Regularity for the 3D Stochastic Primitive Equations of the Ocean and Atmosphere with Multiplicative White Noise

    Full text link
    The Primitive Equations are a basic model in the study of large scale Oceanic and Atmospheric dynamics. These systems form the analytical core of the most advanced General Circulation Models. For this reason and due to their challenging nonlinear and anisotropic structure the Primitive Equations have recently received considerable attention from the mathematical community. In view of the complex multi-scale nature of the earth's climate system, many uncertainties appear that should be accounted for in the basic dynamical models of atmospheric and oceanic processes. In the climate community stochastic methods have come into extensive use in this connection. For this reason there has appeared a need to further develop the foundations of nonlinear stochastic partial differential equations in connection with the Primitive Equations and more generally. In this work we study a stochastic version of the Primitive Equations. We establish the global existence of strong, pathwise solutions for these equations in dimension 3 for the case of a nonlinear multiplicative noise. The proof makes use of anisotropic estimates, LtpLxqL^{p}_{t}L^{q}_{x} estimates on the pressure and stopping time arguments.Comment: To appear in Nonlinearit

    Ca II Triplet Spectroscopy of Small Magellanic Cloud Red Giants. I. Abundances and Velocities for a Sample of Clusters

    Full text link
    We have obtained near-infrared spectra covering the Ca II triplet lines for a number of stars associated with 16 SMC clusters using the VLT + FORS2. These data compose the largest available sample of SMC clusters with spectroscopically derived abundances and velocities. Our clusters span a wide range of ages and provide good areal coverage of the galaxy. Cluster members are selected using a combination of their positions relative to the cluster center as well as their abundances and radial velocities. We determine mean cluster velocities to typically 2.7 km/s and metallicities to 0.05 dex (random errors), from an average of 6.4 members per cluster. (continued in paper)Comment: 68 pages, 15 figures, Accepted to AJ Reason for the replacement: section 7 and fig. 9 have been modified according referee suggestion

    Architecture of the yeast elongator complex

    Get PDF
    The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1-6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub-complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two-lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator

    Virgo cluster early-type dwarf galaxies with the Sloan Digital Sky Survey. II. Early-type dwarfs with central star formation

    Get PDF
    Despite the common picture of an early-type dwarf (dE) as a quiescent galaxy with no star formation and little gas, we identify 23 dEs that have blue central colors caused by recent or ongoing star formation in our sample of 476 Virgo cluster dEs. In addition, 14 objects that were mostly classified as (candidate) BCDs have similar properties. Among the certain cluster members, the dEs with blue centers reach a fraction of more than 15% of the dE population at brighter (B<=16) magnitudes. A spectral analysis of the centers of 16 galaxies reveals in all cases an underlying old population that dominates the mass, with M(old)>=90% for all but one object. Therefore the majority of these galaxies will appear like ordinary dEs within ~one Gigayear or less after the last episode of star formation. Their overall gas content is less than that of dwarf irregular galaxies, but higher than that of ordinary dEs. Their flattening distribution suggests the shape of a thick disk, similar to what has been found for dEs with disk features in Paper I of this series. Their projected spatial distribution shows no central clustering, and their distribution with projected local density follows that of irregular galaxies, indicative of an unrelaxed population. This is corroborated by their velocity distribution, which displays two side peaks characteristic of recent infall. We discuss possible formation mechanisms (ram-pressure stripping, tidally induced star formation, harassment) that might be able to explain both the disk shape and the central star formation of the dEs with blue centers.Comment: 16 pages + 15 figures. Accepted for publication in AJ. We recommend downloading the full resolution version from http://www.virgo-cluster.com/lisker2006b.ps.g

    SMC in space and time: a project to study the evolution of the prototype interacting late-type dwarf galaxy

    Get PDF
    We introduce the SMC in space and time, a large coordinated space and ground-based program to study star formation processes and history, as well as variable stars, structure, kinematics and chemical evolution of the whole SMC. Here, we present the Colour-Magnitude Diagrams (CMDs) resulting from HST/ACS photometry, aimed at deriving the star formation history (SFH) in six fields of the SMC. The fields are located in the central regions, in the stellar halo, and in the wing toward the LMC. The CMDs are very deep, well beyond the oldest Main Sequence Turn-Off, and will allow us to derive the SFH over the entire Hubble tim

    The Type II supernovae 2006V and 2006au: two SN 1987A-like events

    Full text link
    Supernova 1987A revealed that a blue supergiant (BSG) star can end its life as a core-collapse supernova (SN). SN 1987A and other similar objects exhibit properties that distinguish them from ordinary Type II Plateau (IIP) SNe, whose progenitors are believed to be red supergiants (RSGs). Similarities among 1987A-like events include a long rise to maximum, early luminosity fainter than that of normal Type IIP SNe, and radioactivity acting as the primary source powering the light curves. We present and analyze two SNe monitored by the Carnegie Supernova Project that are reminiscent of SN 1987A. Optical and near-infrared (NIR) light curves, and optical spectroscopy of SNe 2006V and 2006au are presented. These observations are compared to those of SN 1987A, and are used to estimate properties of their progenitors. Both objects exhibit a slow rise to maximum and light curve evolution similar to that of SN 1987A. At the earliest epochs, SN 2006au also displays an initial dip which we interpret as the signature of the adiabatic cooling phase that ensues shock break- out. SNe 2006V and 2006au are both found to be bluer, hotter and brighter than SN 1987A. Spectra of SNe 2006V and 2006au are similar to those of SN 1987A and other normal Type II objects, although both consistently exhibit expansion velocities higher than SN 1987A. Semi-analytic models are fit to the UVOIR light curve of each object from which physical properties of the progenitors are estimated. This yields ejecta mass estimates of about 20 solar masses, explosion energies of 2 - 3 x 10^51 erg, and progenitor radii of 75 - 100 solar radii for both SNe. The progenitors of SNe 2006V and 2006au were most likely BSGs with a larger explosion energy as compared to that of SN 1987A.Comment: 21 pages,15 figures, accepted for publication in A&A, 25 October 201

    RAPID AND RELIABLE HEALING OF CRITICAL SIZE BONE DEFECTS WITH GENETICALLY MODIFIED SHEEP MUSCLE

    Get PDF
    Large segmental defects in bone fail to heal and remain a clinical problem. Muscle is highly osteogenic, and preliminary data suggest that autologous muscle tissue expressing bone morphogenetic protein-2 (BMP-2) efficiently heals critical size defects in rats. Translation into possible human clinical trials requires, inter alia, demonstration of efficacy in a large animal, such as the sheep. Scale-up is fraught with numerous biological, anatomical, mechanical and structural variables, which cannot be addressed systematically because of cost and other practical issues. For this reason, we developed a translational model enabling us to isolate the biological question of whether sheep muscle, transduced with adenovirus expressing BMP-2, could heal critical size defects in vivo. Initial experiments in athymic rats noted strong healing in only about one-third of animals because of unexpected immune responses to sheep antigens. For this reason, subsequent experiments were performed with Fischer rats under transient immunosuppression. Such experiments confirmed remarkably rapid and reliable healing of the defects in all rats, with bridging by 2 weeks and remodelling as early as 3-4 weeks, despite BMP-2 production only in nanogram quantities and persisting for only 1-3 weeks. By 8 weeks the healed defects contained well-organised new bone with advanced neo-cortication and abundant marrow. Bone mineral content and mechanical strength were close to normal values. These data demonstrate the utility of this model when adapting this technology for bone healing in sheep, as a prelude to human clinical trials

    Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage

    Get PDF
    We report a novel technology for the rapid healing of large osseous and chondral defects, based upon the genetic modification of autologous skeletal muscle and fat grafts. These tissues were selected because they not only possess mesenchymal progenitor cells and scaffolding properties, but also can be biopsied, genetically modified and returned to the patient in a single operative session. First generation adenovirus vector carrying cDNA encoding human bone morphogenetic protein-2 (Ad.BMP-2) was used for gene transfer to biopsies of muscle and fat. To assess bone healing, the genetically modified ("gene activated") tissues were implanted into 5mm-long critical size, mid-diaphyseal, stabilized defects in the femora of Fischer rats. Unlike control defects, those receiving gene-activated muscle underwent rapid healing, with evidence of radiologic bridging as early as 10 days after implantation and restoration of full mechanical strength by 8 weeks. Histologic analysis suggests that the grafts rapidly differentiated into cartilage, followed by efficient endochondral ossification. Fluorescence in situ hybridization detection of Y-chromosomes following the transfer of male donor muscle into female rats demonstrated that at least some of the osteoblasts of the healed bone were derived from donor muscle. Gene activated fat also healed critical sized defects, but less quickly than muscle and with more variability. Anti-adenovirus antibodies were not detected. Pilot studies in a rabbit osteochondral defect model demonstrated the promise of this technology for healing cartilage defects. Further development of these methods should provide ways to heal bone and cartilage more expeditiously, and at lower cost, than is presently possible
    • …
    corecore