57 research outputs found

    Evaluation of an emergent feature of sub-shelf melt oscillations from an idealized coupled ice sheet-ocean model using FISOC (v1.1) - ROMSIceShelf (v1.0) - Elmer/Ice (v9.0)

    Get PDF
    Changes in ocean-driven basal melting have a key influence on the stability of ice shelves, the mass loss from the ice sheet, ocean circulation, and global sea level rise. Coupled ice sheet–ocean models play a critical role in understanding future ice sheet evolution and examining the processes governing ice sheet responses to basal melting. However, as a new approach, coupled ice sheet–ocean systems come with new challenges, and the impacts of solutions implemented to date have not been investigated. An emergent feature in several contributing coupled models to the 1st Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP1) was a time-varying oscillation in basal melt rates. Here, we use a recently developed coupling framework, FISOC (v1.1), to connect the modified ocean model ROMSIceShelf (v1.0) and ice sheet model Elmer/Ice (v9.0), to investigate the origin and implications of the feature and, more generally, the impact of coupled modeling strategies on the simulated basal melt in an idealized ice shelf cavity based on the MISOMIP setup. We found the spatial-averaged basal melt rates (3.56 m yr−1) oscillated with an amplitude ∼0.7 m yr−1 and approximate period of ∼6 years between year 30 and 100 depending on the experimental design. The melt oscillations emerged in the coupled system and the standalone ocean model using a prescribed change of cavity geometry. We found that the oscillation feature is closely related to the discretized ungrounding of the ice sheet, exposing new ocean, and is likely strengthened by a combination of positive buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and the frequent coupling of ice geometry and ocean evolution. Sensitivity tests demonstrate that the oscillation feature is always present, regardless of the choice of coupling interval, vertical resolution in the ocean model, tracer properties of cells ungrounded by the retreating ice sheet, or the dependency of friction velocities to the vertical resolution. However, the amplitude, phase, and sub-cycle variability of the oscillation varied significantly across the different configurations. We were unable to ultimately determine whether the feature arises purely due to numerical issues (related to discretization) or a compounding of multiple physical processes amplifying a numerical artifact. We suggest a pathway and choices of physical parameters to help other efforts understand the coupled ice sheet–ocean system using numerical models

    Simulating the roles of crevasse routing of surface water and basal friction on the surge evolution of Basin 3, Austfonna ice cap

    Get PDF
    The marine-terminating outlet in Basin 3, Austfonna ice cap, has been accelerating since the mid-1990s. Stepwise multi-annual acceleration associated with seasonal summer speed-up events was observed before the outlet entered the basin-wide surge in autumn 2012. We used multiple numerical models to explore hydrologic activation mechanisms for the surge behaviour. A continuum ice dynamic model was used to invert basal friction coefficient distributions using the control method and observed surface velocity data between April 2012 and July 2014. This has provided input to a discrete element model capable of simulating individual crevasses, with the aim of finding locations where meltwater entered the glacier during the summer and reached the bed. The possible flow paths of surface meltwater reaching the glacier bed as well as those of meltwater produced at the bed were calculated according to the gradient of the hydraulic potential. The inverted friction coefficients show the "unplugging" of the stagnant ice front and expansion of low-friction regions before the surge reached its peak velocity in January 2013. Crevasse distribution reflects the basal friction pattern to a high degree. The meltwater reaches the bed through the crevasses located above the margins of the subglacial valley and the basal melt that is generated mainly by frictional heating flows either to the fast-flowing units or potentially accumulates in an overdeepened region. Based on these results, the mechanisms facilitated by basal meltwater production, crevasse opening and the routing of meltwater to the bed are discussed for the surge in Basin 3.Peer reviewe

    Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves

    Get PDF
    Iceberg calving from all Antarctic ice shelves has never been directly measured, despite playing a crucial role in ice sheet mass balance. Rapid changes to iceberg calving naturally arise from the sporadic detachment of large tabular bergs but can also be triggered by climate forcing. Here we provide a direct empirical estimate of mass loss due to iceberg calving and melting from Antarctic ice shelves. We find that between 2005 and 2011, the total mass loss due to iceberg calving of 755 ± 24 gigatonnes per year (Gt/y) is only half the total loss due to basal melt of 1516 ± 106 Gt/y. However, we observe widespread retreat of ice shelves that are currently thinning. Net mass loss due to iceberg calving for these ice shelves (302 ± 27 Gt/y) is comparable in magnitude to net mass loss due to basal melt (312 ± 14 Gt/y). Moreover, we find that iceberg calving from these decaying ice shelves is dominated by frequent calving events, which are distinct from the less frequent detachment of isolated tabular icebergs associated with ice shelves in neutral or positive mass balance regimes. Our results suggest that thinning associated with ocean-driven increased basal melt can trigger increased iceberg calving, implying that iceberg calving may play an overlooked role in the demise of shrinking ice shelves, and is more sensitive to ocean forcing than expected from steady state calving estimates

    Importance of basal boundary conditions in transient simulations : case study of a surging marine-terminating glacier on Austfonna, Svalbard

    Get PDF
    We assess the importance of basal boundary conditions for transient simulations of Basin 3, Austfonna ice cap between January 1995 and December 2011 and for the surge starting in 2012 by carrying out simulations with the full-Stokes model Elmer/Ice and the vertically-integrated model BISICLES. Time-varying surface mass-balance data from the regional climate model HIRHAM5 are downscaled according to elevation. Basal friction coefficient is varied through time by interpolating between two data-constrained inversions of surface velocity fields, from 1995 and 2011. Evolution of the basal boundary condition appears to be much more important for mass discharge and the dynamic response of the fast flowing unit in Basin 3 than either model choice or the downscaling method for the surface mass balance. In addition, temporally linear extrapolation of the evolution of basal friction coefficient beyond the 2011 distribution could not reproduce the expansion of the acceleration observed in southern Basin 3 between January 2012 and June 2013. This implies that changes in basal friction patterns, and in turn basal processes that are not currently represented in either model, are among the most important factors for the 2012 acceleration.Peer reviewe

    Impact of model physics on estimating the surface mass balance of the Greenland ice sheet

    Get PDF
    Long-term predictions of sea level rise from increased Greenland ice sheet melting have been derived using Positive Degree Day models only. It is, however, unknown precisely what uncertainties are associated with applying this simple surface melt parameterization for future climate. We compare the behavior of a Positive Degree Day and Energy Balance/ Snowpack model for estimating the surface mass balance of the Greenland ice sheet under a warming climate. Both models were first tuned to give similar values for present-day mass balance using 10 years of ERA-40 climatology and were then run for 300 years, forced with the output of a GCM in which atmospheric CO2 increased to 4 times preindustrial levels. Results indicate that the Positive Degree Day model is more sensitive to climate warming than the Energy Balance model, generating annual runoff rates almost twice as large for a fixed ice sheet geometry. Roughly half of this difference was due to differences in the volume of melt generated and half was due to differences in refreezing rates in the snowpack. Our results indicate that the modeled snowpack properties evolve on a multidecadal timescale to changing climate, with a potentially large impact on the mass balance of the ice sheet; an evolution that was absent from the Positive Degree Day model. Copyright 2007 by the American Geophysical Union
    corecore