1,935 research outputs found
Synthesis and Characterization of Au:Ag Core-Shell Nanoparticles with 4-Aminothiophenol Surface Enhance Raman Spectroscopy (SERS) Tag
At the Linfield Symposium the research on silver coated gold nanoparticles tagged SERS will be presented. Gold core nanoparticles were synthesized and coated with a silver shell. These core-shell nanoparticles were tagged with a Surface Enhanced Raman Signal (SERS) tag, 4-aminothiophenol. These tagged particles were monitored for stability and signal enhancement over time. When stability was proven, the tagged particles were coated with a polymer (PAH) and then a lipid bilayer (POPS:LPC). These particles were again monitored for stability and signal strength on the Raman. The overall goal was to synthesize silver coated gold nanoparticles, tag and enhance their Raman signal, and coat them with lipids while keeping the particles at a reasonable small size
Recommended from our members
Plastic Microbial Acclimation and Optimisation of Composting and Anaerobic Digestion Processes may Improve Degradation Times
Comparing the efficacy of multimedia modules with traditional textbooks for learning introductory physics content
A clinical study was performed comparing the efficacy of multimedia learning
modules with traditional textbooks for the first few topics of a calculus based
introductory electricity and magnetism course. Students were randomly assigned
to three different groups experiencing different presentations of the material;
one group received the multimedia learning module presentations and the other
two received the presentations via written text. All students were then tested
on their learning immediately following the presentations as well as two weeks
later. The students receiving the multimedia learning modules performed
significantly better than the students experiencing the text-based
presentations on both tests.Comment: 21 pages, submitted to AJ
Recommended from our members
Monitoring bioaerosol and odour emissions from composting facilities - WR1121
Government policy requires that valuable resources should be recovered and recycled from biodegradable waste. A successful and growing organics recycling industry delivers this policy with composting being one of the principal technologies deployed to process suitable feedstock such as garden and food waste. Composting inevitably generates bioaerosols – particulate matter comprising cells or cellular components that are released into the air as a result of disturbance of composting feedstock or the processing of final product. Exposure to bioaerosols has the potential to be harmful to human and animal health. The Environment Agency adopts a precautionary and risk-based approach to the regulation of composting facilities which was developed on the basis of research by Wheeler et al. (2001) and which has been updated as new evidence has become available. The Environment Agency also requires site operators to monitor bioaerosols around their facilities using methods specified in a standard protocol which relies upon classical microbiology methods which are tried and tested but which are labour-intensive, slow and offer only a snapshot view of a highly dynamic system. A recent IOM review commissioned by Defra (Searl, 2009) on exposure-response relationships for bioaerosol emissions from waste treatment processes identified significant gaps in knowledge of exposure to bioaerosols and recommended that more research was needed into alternatives to viable microbial monitoring such as priority biomarkers (notably endotoxin) and potential surrogates such as particulate matter. The IOM review also concluded that there is a lack of information to support the development of appropriate stand-off distances.
The overall aim of this project was to provide evidence on bioaerosol production, dispersion and potential exposures from composting facilities in support of future developments in policy and regulation of biowaste facilities. The objectives were: (i) to undertake a comprehensive set of standard and novel bioaerosol measurements at representative composting sites to assess comparability between different methods and also to measure spatial and temporal variations; and (ii) to determine the odour emissions and then compare these with bioaerosol emissions to see if odour is a marker of significant bioaerosol exposure. Standard (AfOR, 2009) and novel (CEN filter method, endotoxin, glucan, qPCR, real-time particulates) bioaerosols measurements were taken on a minimum of three to a maximum of six occasions over a twelve month period at four different composting facilities in England. The composting facilities were selected to represent sites of varying sizes (tonnages) and to allow a comparison of bioaerosol concentrations at standard open windrow sites versus a fully-contained site. Additional supporting information was collected including meteorological data at the time of sampling, observation of site operations and measurements of odour at one of the sites. Supporting bioaerosol and odour dispersion modelling was conducted at the site where the odour measurements were made.
The spatial trend of bioaerosol concentrations described by Wheeler et al., (1991) and upon which EA regulatory policy is based was broadly corroborated by this dataset. Excursions above the EA acceptable levels at or beyond 250m from source were rare. Bioaerosol concentrations at the enclosed site were generally lower than at the open windrow sites. There was no evidence of a seasonal pattern in bioaerosol concentrations at any of the sites whereas between-sampling day variations were apparent. The cause(s) of these variations were not identified.
No consistent relationship was observed between the concentration of bioaerosols measured by the two AfOR standard methods. The two methods displayed certain strengths and weakness in different situations. The IOM sampling device proved to be better suited to situations where high bioaerosol concentrations were encountered (close to source); the Andersen proving to be more effective in the lower concentration range typically found upwind of a site or at distance downwind from source. The higher volume filtration device tested in this project (referred to as the CEN method) produced data that did not consistently match either of the AfOR standard methods. This device demonstrated greater sensitivity than the IOM filter method but suffered drawbacks associated with its weight and a lack of ease of use in the field.
Endotoxin concentrations were normally below the level recommended by the Dutch Expert Committee on Occupational Safety but occasional exceedances of this standard were detected at the larger open windrow sites. The majority of glucan measurements were below a widely referred to 10ng/m3 threshold. Significantly elevated concentrations were detected at one of the larger open windrow sites.
The dynamic range of the qPCR method is wider (4-5-log) than either of the AfOR and the CEN methods. It is also quicker to carry out and has the potential for automation. The results from the qPCR method are mainly higher than standard AfOR methods, as the method does not distinguish viable and non-viable spores. The spatial distribution of Aspergillus fumigatus spores (by qPCR) along sampling transects, gives similar results compared to AfOR (and CEN) methods. Real time particle detection showed that both TSP and PM10 are correlated to Aspergillus fumigatus spore concentration.
No consistent relationship was observed between odour and bioaerosol concentrations (although this was a limited dataset). The envelope of modelled (back-extrapolated) bioaerosol emission rates straddles several orders of magnitude. Distinguishing the influences of meteorological conditions on this variability was not possible. It was not possible to predict bioaerosol or odour emission rates with confidence. This continues to hamper confidence in modelling of odours and bioaerosols from open windrow facilities.
The findings of this research have implications for the current standard monitoring protocol which should be reviewed accordingly. The findings of this multi-site survey accord with existing regulatory policy and are supportive of the general trend towards enclosed facilities. Notwithstanding this, continuing research is needed to enhance the database on emission from bioaerosol and odour abatement technologies (e.g. biofilters); to determine the cause(s) of occasional bioaerosol peaks from open facilities; to improve exposure assessments through better modelling protocols; and to link enhanced exposure information to future health impact studies
A Time-independent Way to Probe D^0-\bar D^0 Mixing at Tau-charm Factories
mixing leads to the mass and width differences in the mass
eigenstates of and mesons (measured by parameters
and respectively), but their magnitudes cannot be reliably predicted
by the standard model. We show that it is possible to separately determine
and through {\it time-integrated} measurements of the
dilepton events of coherent decays on the resonance
at a -charm factory.Comment: 7 pages. Minor changes. (Phys. Lett. B in press
Recommended from our members
Towards improved bioaerosol model validation and verification
Bioaerosols, comprised of bacteria, fungi and viruses are ubiquitous in ambient air. Known to adversely affect human health, the impact of bioaerosols on a population often manifests as outbreaks of illnesses such as Legionnaires Disease and Q fever, although the concentrations and environmental conditions in which these impacts occur are not well understood. Bioaerosol concentrations vary from source to source, but specific industrialised human activities such as water treatment, intensive agriculture and open windrow composting facilitate the generation of bioaerosol concentrations many times higher than natural background levels. Bioaerosol sampling is currently undertaken according to the requirements of the Environment Agency’s regulatory framework, in which the collection of bioaerosols and not its long-term measurement is of most importance. As a consequence, sampling devices are often moved around site according to changing wind direction and sampling intervals are invariably short-term. The dispersion modelling of bioaerosols from composting facilities typically relies on proxy pollutant parameters. In addition, the use of short term emission data gathering strategies in which monitors are moved frequently with wind direction, do not provide a robust reliable and repeatable dataset by which to validate any modelling or to verify its performance. New sampling methods such as the Spectral Intensity Bioaerosol Sensor (SIBS) provide an opportunity to address several gaps in bioaerosol model validation and verification. In the context of model validation, this paper sets out the current weaknesses in bioaerosol monitoring from the perspective of robust modelling requirements
Color Dipole Systematics of the Diffraction Slope in Diffractive Photo- and Electroproduction of Vector Mesons
We present the first evaluation of the color dipole diffraction slope from
the data on diffractive photo- and electroproduction of vector mesons. The
energy and dipole size dependence of the found dipole diffraction slope are
consistent with the color dipole gBFKL dynamics.Comment: 11 pages including 2 figure
Scoping studies to establish the capability and utility of a real-time bioaerosol sensor to characterise emissions from environmental sources
A novel dual excitation wavelength based bioaerosol sensor with multiple fluorescence bands called Spectral Intensity Bioaerosol Sensor (SIBS) has been assessed across five contrasting outdoor environments. The mean concentrations of total and fluorescent particles across the sites were highly variable being the highest at the agricultural farm (2.6 cm−3 and 0.48 cm−3, respectively) and the composting site (2.32 cm−3 and 0.46 cm−3, respectively) and the lowest at the dairy farm (1.03 cm−3 and 0.24 cm−3, respectively) and the sewage treatment works (1.03 cm−3 and 0.25 cm−3, respectively). In contrast, the number-weighted fluorescent fraction was lowest at the agricultural site (0.18) in comparison to the other sites indicating high variability in nature and magnitude of emissions from environmental sources. The fluorescence emissions data demonstrated that the spectra at different sites were multimodal with intensity differences largely at wavelengths located in secondary emission peaks for λex 280 and λex 370. This finding suggests differences in the molecular composition of emissions at these sites which can help to identify distinct fluorescence signature of different environmental sources. Overall this study demonstrated that SIBS provides additional spectral information compared to existing instruments and capability to resolve spectrally integrated signals from relevant biological fluorophores could improve selectivity and thus enhance discrimination and classification strategies for real-time characterisation of bioaerosols from environmental sources. However, detailed lab-based measurements in conjunction with real-world studies and improved numerical methods are required to optimise and validate these highly resolved spectral signatures with respect to the diverse atmospherically relevant biological fluorophores
Is Soil Quality Linked to PSNP Graduation in East and West Hararghe, Ethiopia?
Many households in Ethiopia have struggled to remain food secure and meet their nutritional needs. In response to chronic food insecurity the Ethiopian government developed the Productive Safety Net Program (PSNP) to provide support to households in the form of food or cash transfers in exchange for public service work. The idea of the program is that households will develop their livelihoods through the public work and eventually become self-sufficient, food secure and graduate from the PSNP.
Some households graduate from PSNP in a shorter time than others, attributing to many different factors. This study looks at soil quality as a factor influencing a household’s ability to graduate and hypothesizes that houses which have already graduated from PSNP will have soil of better quality. The survey was conducted with the University of Maryland’s Qualitative Soil Assessment Book indicator table for PSNP graduate, PSNP participant and non-PSNP households. Results of the survey proved that PSNP graduate households had soil of better quality. The follow paper also discusses the need for further research as well as implications for sustainable development.
PSNP, food insecurity, soil quality, Ethiopi
- …
