50 research outputs found

    Enantiomere Erkennungsmechanismen von Cyclodextrinen: Ein NMR spektroskopischer und gaschromatographischer Ansatz zur Evaluierung der Rolle der KavitÀt bei enantioselektiven Wechselwirkungen

    Get PDF
    On the role of outside vs. inside interactions for the enantiorecognition by cyclodextrins: conventional mechanism and novel insights Native and derivatized cyclodextrins represent versatile chiral selectors for the separation of enantiomers by chromatographic and electromigratory methods. However, the underlying mechanisms of enantiorecognition are still poorly understood. While the presence of a cavity and inclusion therein is often thought to be of prime importance for enantioseparation of racemic analytes it is conceivable that this effect can be complemented, or even overridden, by interaction of analytes with the external surface of cyclodextrins. To probe the importance of the molecular inclusion mechanism, linear dextrin derivatives - devoid of a true cavity - have been synthesized and compared with their cyclic analogues with regard to their properties as chiral selectors for enantioselective gas chromatography. Via the comparison of cyclic and acyclic dextrins (cyclodextrins versus 'acyclodextrins') it is demonstrated that the existence of a cavity is not a prerequisite to enantiorecognition. Thus, the well known gas-chromatographic selector heptakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin has been compared with the corresponding linear derivative heptakis[(2,3-di-O,4''-O)-acetyl-(1'-O,6-O)-tert-butyldimethylsilyl]-maltoheptaose and a complementary enantioseparation ability for alpha-amino acid derivatives (N-trifluoroacetyl-O-methyl/ethyl-esters) and racemic halogenated compounds was observed. In several cases, the acyclic chiral stationary phase (CSP) was even more enantioselective than the cyclic CSP. While it is conceivable that the maltoheptaose derivative could still form a "pseudo cavity" which is responsible for the observed enantiorecognition, this is certainly not the case with the maltotriose and glucose derivatives, these molecules being too small to be able to form a helical conformation. Surprisingly, even on the single building block comprising cyclodextrins and linear dextrins, i.e., (2,3,4-tri-O-acetyl-1,6-di-O-tert-butyldimethylsilyl)-D-glucose, the enantiomers of some alpha-amino acid derivatives and racemic halogenated compounds could be separated by gas chromatography. Whereas cyclodextrins are available only in the D form, the linear counterparts can readily be synthesized in the D and L form, which is of interest for peak inversion scenarios in the chromatographic analysis of non-racemic mixtures. These unexpected enantioseparations prove the existence of enantioselective interactions with the outer surface of the selector. Enantiorecognition mechanism by NMR spectroscopic studies The controversial role of the inclusion phenomenon by cyclodextrins has also been verified by NMR studies in solution, where investigations were focused on the enantiorecognition process and on the conformation of the derivatized chiral selector. In this respect, derivatized cyclodextrins differ strongly from the native macrocycles. Due to the distortion of the glucose units and their tilting across the glycosidic linkages, the conformation of modified alpha-, beta- and gamma-cyclodextrin selectors are often significantly different from a classical torus shaped structure and the diameter of the cavity is markedly affected by derivatization. Thus, the functional groups on the two rims of cyclodextrins play an important role in the complexation step as demonstrated in this work for the enantiodiscrimination of 'compound B' by heptakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin. The yet unchallenged role of the cavity in the enantioseparation process of racemic hydrocarbons In the case of apolar racemic analytes such as saturated aliphatic hydrocarbons, the inclusion process still appears to be the driving force for enantiorecognition on the well established selector Chirasil-beta-Dex, since no enantioseparation is observed on the acyclic counterpart of linear permethylated maltoheptaose (both as the diluted and supported CSP). However, in many cases, e.g. for the per-O-methylated beta-cyclodextrin, the role of the cavity is not very well understood. Thus, the application of linear selectors as novel CSP represents a comparable tool to determine whether an inclusion phenomenon is present or absent with the established cyclic selectors. Furthermore, the size of the cavity cannot be the sole parameter in rationalizing the enantiorecognition because the nature of the functional groups on the two rims plays a key role for the overall structure by modifying the cavity size and by directing the enantiorecognition towards the external surface of the macrocycles.Über die Rolle von externen und internen Wechselwirkungen fĂŒr die Enantiomerenerkennung durch Cyclodextrine: konventioneller Mechanismus und neue Erkenntnisse Native and derivatisierte Cyclodextrine stellen effektive chirale Selektoren zur Enantiomerentrennung durch Chromatographie und Elektromigration dar. Allerdings werden die verantwortlichen Mechanismen der Enantiomerenerkennung kaum verstanden. WĂ€hrend die Gegenwart einer KavitĂ€t, und Inklusion in dieselbe, oft als Hauptursache fĂŒr die Enantiomerenerkennung racemischer Analyte angesehen wird, kann es sein, dass dieser Effekt ergĂ€nzt oder ĂŒbertroffen wird durch die Wechselwirkung mit der externen OberflĂ€che der Cyclodextrine. Um die Signifikanz der molekularen Inklusion zu untersuchen, wurden lineare Dextrinderivate, die ĂŒber keine KavitĂ€t verfĂŒgen, synthetisiert und mit ihren cyclischen Analoga im Hinblick auf ihre Eigenschaften als chirale Selektoren fĂŒr die enantioselektive Gaschromatographie verglichen. Mithilfe des Vergleichs von cyclischen und acyclischen Dextrinen (Cyclodextrine versus 'Acyclodextrine') wird gezeigt, dass die Existenz einer KavitĂ€t keine Voraussetzung fĂŒr die Enantiomerenerkennung ist. So wurde der bekannte Selektor Heptakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin mit dem entsprechenden linearen Derivat Heptakis[(2,3-di-O,4''-O)-acetyl-(1'-O,6-O)-tert-butyldimethylsilyl]-maltoheptaose verglichen und es wurde eine komplementĂ€re Enantiomerenerkennung fĂŒr alpha-AminosĂ€urederivate (N-Trifluoroacetyl-O-methyl/ethyl-ester) und racemische halogenierte Verbindungen beobachtet. In verschiedenen FĂ€llen war die acyclische chirale stationary Phase (CSP) sogar enantioselektiver als die cyclische CSP. WĂ€hrend es vorstellbar ist, dass das Maltoheptaose-Derivat immer noch eine "PseudokavitĂ€t" ausbildet, die fĂŒr die beobachtete Enantiomerenerkennung verantwortlich ist, gilt dies sicher nicht fĂŒr die Maltotriose und Glucosederivate, da diese MolekĂŒle zu klein sind, um eine helikale Konformation auszubilden. Überraschenderweise wurden sogar mit dem einfachen Baustein der Cyclodextrine und linearen Dextrine, nĂ€mlich mit (2,3,4-tri-O-acetyl-1,6-di-O-tert-butyldimethylsilyl)-D-glucose, die Enantiomere einiger alpha-AminosĂ€urederivate und racemischer halogenierter Verbindungen durch Gaschromatographie getrennt. WĂ€hrend Cyclodextrine nur in der D Form verfĂŒgbar sind, können die linearen GegenstĂŒcke in einfacher Weise in der D und L Form hergestellt werden, was wichtig ist fĂŒr Peakinversionszenarios in der chromatographischen Analyse von of nicht-racemischen Mischungen. Diese unerwarteten Enantiomerentrennungen beweisen die Existenz von enantioselektiven Wechselwirkungen mit der Ă€ußeren OberflĂ€che der Selektoren. Enantiomerenerkennungsmechanismus durch NMR spektroscopische Untersuchungen Die kontroverse Rolle des InklusionsphĂ€nomens durch Cyclodextrine wurde auch durch NMR Untersuchungen in Lösung verifiziert, wobei die Untersuchungen auf den Enantiomerenerkennungsprozess und auf die Konformation des derivatisierten chiralen Selektors fokussiert wurde. In diesem Zusammenhang unterscheiden sich derivatisierte Cyclodextrine stark von den nativen Makrocyclen. Aufgrund der Verzerrung der Glucoseeinheiten und ihrer Neigung gegenĂŒber der glycosidischen Bindungen weist die Konformation der modifizierten Alpha-, Beta- and Gamma-Cyclodextrinselektoren oft in markanter Weise Unterschiede gegenĂŒber der klassischen Torus-Struktur auf und der Durchmesser der KavitĂ€t wird deutlich durch die Derivatisierung beeinflusst. So spielen die funktionellen Gruppen an den Öffnungen der Cyclodextrine eine wichtige Rolle im Komplexierungsschritt wie in dieser Arbeit anhand der Enantiomerendiskriminierung von 'compound B' an Heptakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin gezeigt wurde. Die unumstrittene Rolle der KavitĂ€t im Enantiomerenerkennungsprozess racemischer Kohlenwasserstoffe Im Falle apolarer racemischer Analyte wie gesĂ€ttigte aliphatische Kohlenwasserstoffe erscheint immer noch der Inklusionsprozess die Treibkraft der Enantiomerenerkennung an dem etablierten Selektor Chirasil-beta-Dex zu sein, zumal keine Enantiomerenerkennung an dem acyclischen GegenstĂŒck, der linearen permethylierten Maltoheptaose (beide als verdĂŒnnte und gebundene CSP), beobachtet wurde. Fernerhin kann die GrĂ¶ĂŸe der KavitĂ€t nicht der einzige Parameter in der Rationalisierung der Enantiomerenerkennung sein, da die Natur der funktionellen Gruppen an beiden Öffnungen eine wesentliche Rolle fĂŒr die Gesamtstruktur spielen, indem diese die GrĂ¶ĂŸe der KavitĂ€t modifizieren und die Enantiomerenerkennung in Richtung der externen OberflĂ€che der Makrocyclen dirigieren

    Lesion-induced DNA weak structural changes detected by pulsed EPR spectroscopy combined with site-directed spin labelling

    Get PDF
    Double electron-electron resonance (DEER) was applied to determine nanometre spin–spin distances on DNA duplexes that contain selected structural alterations. The present approach to evaluate the structural features of DNA damages is thus related to the interspin distance changes, as well as to the flexibility of the overall structure deduced from the distance distribution. A set of site-directed nitroxide-labelled double-stranded DNA fragments containing defined lesions, namely an 8-oxoguanine, an abasic site or abasic site analogues, a nick, a gap and a bulge structure were prepared and then analysed by the DEER spectroscopic technique. New insights into the application of 4-pulse DEER sequence are also provided, in particular with respect to the spin probes’ positions and the rigidity of selected systems. The lesion-induced conformational changes observed, which were supported by molecular dynamics studies, confirm the results obtained by other, more conventional, spectroscopic techniques. Thus, the experimental approaches described herein provide an efficient method for probing lesion-induced structural changes of nucleic acids

    Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 7

    Get PDF
    In this contribution, new data concerning algae, bryophytes, fungi, and lichens of the Italian flora are presented. It includes new records and confirmations for the algae genus Chara, the bryophyte genera Cephalozia, Conardia, Conocephalum, Didymodon, Sphagnum, Tetraplodon, and Tortula, the fungal genera Endophyllum, Gymnosporangium, Microbotryum, Phragmidium, and Pluteus, and the lichen genera Candelariella, Cladonia, Flavoplaca, Lichenothelia, Peltigera, Placolecis, Rinodina, Scytinium, and Solenopsora

    Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 7

    Get PDF
    In this contribution, new data concerning algae, bryophytes, fungi, and lichens of the Italian flora are presented. It includes new records and confirmations for the algae genus Chara, the bryophyte genera Cephalozia, Conardia, Conocephalum, Didymodon, Sphagnum, Tetraplodon, and Tortula, the fungal genera Endophyllum, Gymnosporangium, Microbotryum, Phragmidium, and Pluteus, and the lichen genera Candelariella, Cladonia, Flavoplaca, Lichenothelia, Peltigera, Placolecis, Rinodina, Scytinium, and Solenopsora

    Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 12

    Get PDF
    In this contribution, new data concerning bryophytes, fungi and lichens of the Italian flora are presented. It includes new records, confirmations or exclusions for the bryophyte genera Acaulon, Campylopus, En-tosthodon, Homomallium, Pseudohygrohypnum, and Thuidium, the fungal genera Entoloma, Cortinarius, Mycenella, Oxyporus, and Psathyrella and the lichen genera Anaptychia, Athallia, Baeomyces, Bagliettoa, Calicium, Nephroma, Pectenia, Phaeophyscia, Polyblastia, Protoparmeliopsis, Pyrenula, Ramalina, and San-guineodiscus

    Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 12

    Get PDF
    In this contribution, new data concerning bryophytes, fungi and lichens of the Italian flora are presented. It includes new records, confirmations or exclusions for the bryophyte genera Acaulon, Campylopus, Entosthodon, Homomallium, Pseudohygrohypnum, and Thuidium, the fungal genera Entoloma, Cortinarius, Mycenella, Oxyporus, and Psathyrella and the lichen genera Anaptychia, Athallia, Baeomyces, Bagliettoa, Calicium, Nephroma, Pectenia, Phaeophyscia, Polyblastia, Protoparmeliopsis, Pyrenula, Ramalina, and Sanguineodiscus

    Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 13

    Get PDF
    In this contribution, new data concerning bryophytes, fungi and lichens of the Italian flora are presented. It includes new records and confirmations for the bryophyte genera Bryum, Cryphaea, Didymodon, and Grimmia; the fungal genera Bryostigma, Cercidospora, Conocybe, Cortinarius, Endococcus, Inocybe, Psathyrella, and Sphaerellothecium; the lichen genera Agonimia, Anisomeridium, Bilimbia, Diplotomma, Gyalecta, Huneckia, Lecidella, Lempholemma, Myriolecis, Nephroma, Pannaria, Pycnothelia, Pyrrhospora, Rinodina, Stereocaulon, Thalloidima, Trapelia, Usnea, Variospora, and Verrucaria

    Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 13

    Get PDF
    In this contribution, new data concerning bryophytes, fungi and lichens of the Italian flora are presented. It includes new records and confirmations for the bryophyte genera Bryum, Cryphaea, Didymodon, and Grimmia; the fungal genera Bryostigma, Cercidospora, Conocybe, Cortinarius, Endococcus, Inocybe, Psathyrella, and Sphaerellothecium; the lichen genera Agonimia, Anisomeridium, Bilimbia, Diplotomma, Gyalecta, Huneckia, Lecidella, Lempholemma, Myriolecis, Nephroma, Pannaria, Pycnothelia, Pyrrhospora, Rinodina, Stereocaulon, Thalloidima, Trapelia, Usnea, Variospora, and Verrucaria
    corecore