91 research outputs found

    Immunohistochemical analysis of axillary skin biopsies for the detection of adrenergic innervation of sweat glands in normal subjects and Parkinson’s disease patients

    Get PDF
    Beside the typical motor symptoms Parkinson’s disease (PD) is characterized, with varying severity, by autonomic dysfunction. Several studies have shed light on the anatomical and molecular changes that underlie the peripheral neuronal degeneration associated with PD and other Lewy body (LB) diseases (LBDs). By using skin biopsies from LBDs patients it was possible to detect misfolded phospho-α-synuclein (p-syn) deposits within dermal nerve fibers and correlate them with a reduced density of small nerve fibers. (1, 2). The skin biopsy approach is an inexpensive and minimally invasive technique. To date, there is not a standardized procedure for sampling site, tissue processing and nerve fibre assessment, so the goal of a diagnostic instrument for an early diagnosis of (LBDs) still remains a challenge. We have carried out a retrospective study setting up a novel protocol based on 10 ”m thick serial sections from FFPE axillary skin biopsies. This choice take advantage from the presence of apocrine glands in the axillary region, as they receive a dense sympathetic adrenergic innervation, exploitable for a clear nervous fibers tracking. The biopsies were taken from 14 individuals who had been, in the first instance, diagnosed with various traits of motor and neurological dysfunction and two control subjects. Serial tissue sections were analysed by IHC (DAB chromogen) and by immunofluorescent labelling, using anti-p-α-synuclein (S129), anti- α -synuclein, anti-PGP9.5 and anti-tyrosine hydroxylase antibodies. This particular setting has proven useful to well highlight the adrenergic fibers surrounding the apocrine sweat glands and to visualize the fibers α -synuclein deposition. Our results enabled us to support the first diagnosis in various cases with probable PD but gave a negative p-Syn-S129 immunoreactivity results for samples from vascular Parkinson, multiple system atrophy, essential tremor and frontotemporal dementia. Our methodological setting is able to detect the adrenergic innervation of sweat apocrine glands and both the presence of Lewy bodies and Lewy neurites in axillary skin biopsies

    On driver behavior recognition for increased safety:A roadmap

    Get PDF
    Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced

    Atypical Chemokine Receptor 3 Generates Guidance Cues for CXCL12-Mediated Endothelial Cell Migration

    Get PDF
    Chemokine receptor CXCR4, its ligand stromal cell-derived factor-1 (CXCL12) and the decoy receptor atypical chemokine receptor 3 (ACKR3, also named CXCR7), are involved in the guidance of migrating cells in different anatomical districts. Here, we investigated the role of the ACKR3 zebrafish ortholog ackr3b in the vascularization process during embryonic development. Bioinformatics and functional analyses confirmed that ackr3b is a CXCL12-binding ortholog of human ACKR3. ackr3b is transcribed in the endoderm of zebrafish embryos during epiboly and is expressed in a wide range of tissues during somitogenesis, including central nervous system and somites. Between 18 somite and 26 h-post fertilization stages, the broad somitic expression of ackr3b becomes restricted to the basal part of the somites. After ackr3b knockdown, intersomitic vessels (ISVs) lose the correct direction of migration and are characterized by the presence of aberrant sprouts and ectopic filopodia protrusions, showing downregulation of the tip/stalk cell marker hlx1. In addition, ackr3b morphants show significant alterations of lateral dorsal aortae formation. In keeping with a role for ackr3b in endothelial cell guidance, CXCL12 gradient generated by ACKR3 expression in CHO cell transfectants guides human endothelial cell migration in an in vitro cell co-culture chemotaxis assay. Our results demonstrate that ackr3b plays a non-redundant role in the guidance of sprouting endothelial cells during vascular development in zebrafish. Moreover, ACKR3 scavenging activity generates guidance cues for the directional migration of CXCR4-expressing human endothelial cells in response to CXCL12

    Effects of culture system and hypoxia on long-term expansion and differentiation of mesenchymal stem cells derived from periodontal ligament

    Get PDF
    Periodontal ligament stem cells (PDLSCs), located in the perivascular space of the periodontium were able to differentiate into periodontal cell types in vitro [1]. In this study, we investigated the effect of three different culture media and of low oxygen tension (1%) on the immunophenotype, proliferation rate and osteogenic potential of PDLSCs. This study was the first report to compare the PDLSCs from the same person in different culture systems. PDLSCs were harvested from three healthy third molars and the single-cells suspensions were cultured in the culture media a-MEM, DMEM and a new medium formulation (Enriched Ham’s F12 Medium, EHFM), respectively. PDLSCs were subcultured (4 x 103/cm2) until passage 7. The characterization of PDLSCs included FACS, immunofluorescence analysis and cell proliferation assay in both normoxia and hypoxia (1%). After culture in osteogenic medium for 7, 14 and 21 days, osteoblastic differentiation was evaluated by alkaline phosphatase activity, mineralization (alizarin red staining) and gene expression of osteogenic markers. Osteoblastic differentiation was also evaluated under hypoxic conditions. PDLSCs cultured in EHFM showed increased proliferation rate and CD73 overexpression compared to cells maintained in a-MEM and DMEM. On the other hand, PDLSCs grown in a-MEM and DMEM showed higher osteogenic differentiation potential compared to EHFM. Hypoxia affected both proliferation rate and osteogenic potential. On the basis of these results, we propose a two stages protocol for the osteogenic induction of PDLSCs, in which the early expansion stage could be performed in EHFM without loss of cell stemness. Furthermore, the results obtained in the different conditions (normoxia and hypoxia) suggest that oxygen tension plays a critical role in PDLSCs physiology

    HEX expression and localization in normal mammary gland and breast carcinoma

    Get PDF
    BACKGROUND: The homeobox gene HEX is expressed in several cell types during different phases of animal development. It encodes for a protein localized in both the nucleus and the cytoplasm. During early mouse development, HEX is expressed in the primitive endoderm of blastocyst. Later, HEX is expressed in developing thyroid, liver, lung, as well as in haematopoietic progenitors and endothelial cells. Absence of nuclear expression has been observed during neoplastic transformation of the thyroid follicular cells. Aim of the present study was to evaluate the localization and the function of the protein HEX in normal and tumoral breast tissues and in breast cancer cell lines. METHODS: HEX expression and nuclear localization were investigated by immunohistochemistry in normal and cancerous breast tissue, as well as in breast cancer cell lines. HEX mRNA levels were evaluated by real-time PCR. Effects of HEX expression on Sodium Iodide Symporter (NIS) gene promoter activity was investigated by HeLa cell transfection. RESULTS: In normal breast HEX was detected both in the nucleus and in the cytoplasm. In both ductal and lobular breast carcinomas, a great reduction of nuclear HEX was observed. In several cells from normal breast tissue as well as in MCF-7 and T47D cell line, HEX was observed in the nucleolus. MCF-7 treatment with all-trans retinoic acid enhanced HEX expression and induced a diffuse nuclear localization. Enhanced HEX expression and diffuse nuclear localization were also obtained when MCF-7 cells were treated with inhibitors of histone deacetylases such as sodium butyrate and trichostatin A. With respect to normal non-lactating breast, the amount of nuclear HEX was greatly increased in lactating tissue. Transfection experiments demonstrated that HEX is able to up-regulate the activity of NIS promoter. CONCLUSION: Our data indicate that localization of HEX is regulated in epithelial breast cells. Since modification of localization occurs during lactation and tumorigenesis, we suggest that HEX may play a role in differentiation of the epithelial breast cell

    Efficacy of a new technique - INtubate-RECruit-SURfactant-Extubate - "IN-REC-SUR-E" - in preterm neonates with respiratory distress syndrome: Study protocol for a randomized controlled trial

    Get PDF
    Background: Although beneficial in clinical practice, the INtubate-SURfactant-Extubate (IN-SUR-E) method is not successful in all preterm neonates with respiratory distress syndrome, with a reported failure rate ranging from 19 to 69 %. One of the possible mechanisms responsible for the unsuccessful IN-SUR-E method, requiring subsequent re-intubation and mechanical ventilation, is the inability of the preterm lung to achieve and maintain an "optimal" functional residual capacity. The importance of lung recruitment before surfactant administration has been demonstrated in animal studies showing that recruitment leads to a more homogeneous surfactant distribution within the lungs. Therefore, the aim of this study is to compare the application of a recruitment maneuver using the high-frequency oscillatory ventilation (HFOV) modality just before the surfactant administration followed by rapid extubation (INtubate-RECruit-SURfactant-Extubate: IN-REC-SUR-E) with IN-SUR-E alone in spontaneously breathing preterm infants requiring nasal continuous positive airway pressure (nCPAP) as initial respiratory support and reaching pre-defined CPAP failure criteria. Methods/design: In this study, 206 spontaneously breathing infants born at 24+0-27+6 weeks' gestation and failing nCPAP during the first 24 h of life, will be randomized to receive an HFOV recruitment maneuver (IN-REC-SUR-E) or no recruitment maneuver (IN-SUR-E) just prior to surfactant administration followed by prompt extubation. The primary outcome is the need for mechanical ventilation within the first 3 days of life. Infants in both groups will be considered to have reached the primary outcome when they are not extubated within 30 min after surfactant administration or when they meet the nCPAP failure criteria after extubation. Discussion: From all available data no definitive evidence exists about a positive effect of recruitment before surfactant instillation, but a rationale exists for testing the following hypothesis: a lung recruitment maneuver performed with a step-by-step Continuous Distending Pressure increase during High-Frequency Oscillatory Ventilation (and not with a sustained inflation) could have a positive effects in terms of improved surfactant distribution and consequent its major efficacy in preterm newborns with respiratory distress syndrome. This represents our challenge. Trial registration: ClinicalTrials.gov identifier: NCT02482766. Registered on 1 June 2015

    POTENTIAL EFFECTS OF WHOLE-BODY VIBRATION EXERCISES ON BLOOD FLOW KINETICS OF DIFFERENT POPULATIONS: A SYSTEMATIC REVIEW WITH A SUITABLE APPROACH

    Get PDF
    Background: The ability to control skin blood flow decreases with advancing age and some clinical disorders, as in diabetes and in rheumatologic diseases. Feasible clinical strategies such as whole-body vibration exercise (WBVE) are being used without a clear understanding of its effects. The aim of the present study is to review the effects of the WBVE on blood flow kinetics and its feasibility in different populations. Material and Methods: The level of evidence (LE) of selected papers in PubMed and/or PEDRo databases was determined. We selected randomized, controlled trials in English to be evaluated. Results: Six studies had LE II, one had LE III-2 and one III-3 according to the NHMRC. A great variability among the protocols was observed but also in the assessment devices; therefore, more research about this topic is warranted. Conclusion: Despite the limitations, it is can be concluded that the use of WBVE has proven to be a safe and useful strategy to improve blood flow. However, more studies with greater methodological quality are needed to clearly define the more suitable protocols

    Genomic traits of Klebsiella oxytoca DSM 29614, an uncommon metal-nanoparticle producer strain isolated from acid mine drainages

    Get PDF
    Abstract Background: Klebsiella oxytoca DSM 29614 - isolated from acid mine drainages - grows anaerobically using Fe(III)- citrate as sole carbon and energy source, unlike other enterobacteria and K. oxytoca clinical isolates. The DSM 29614 strain is multi metal resistant and produces metal nanoparticles that are embedded in its very peculiar capsular exopolysaccharide. These metal nanoparticles were effective as antimicrobial and anticancer compounds, chemical catalysts and nano-fertilizers. Results: The DSM 29614 strain genome was sequenced and analysed by a combination of in silico procedures. Comparative genomics, performed between 85 K. oxytoca representatives and K. oxytoca DSM 29614, revealed that this bacterial group has an open pangenome, characterized by a very small core genome (1009 genes, about 2%), a high fraction of unique (43,808 genes, about 87%) and accessory genes (5559 genes, about 11%). Proteins belonging to COG categories “Carbohydrate transport and metabolism” (G), “Amino acid transport and metabolism” (E), “Coenzyme transport and metabolism” (H), “Inorganic ion transport and metabolism” (P), and “membrane biogenesis-related proteins” (M) are particularly abundant in the predicted proteome of DSM 29614 strain. The results of a protein functional enrichment analysis - based on a previous proteomic analysis – revealed metabolic optimization during Fe(III)- citrate anaerobic utilization. In this growth condition, the observed high levels of Fe(II) may be due to different flavin metal reductases and siderophores as inferred form genome analysis. The presence of genes responsible for the synthesis of exopolysaccharide and for the tolerance to heavy metals was highlighted too. The inferred genomic insights were confirmed by a set of phenotypic tests showing specific metabolic capability in terms of i) Fe2+ and exopolysaccharide production and ii) phosphatase activity involved in precipitation of metal ion-phosphate salts. Conclusion: The K. oxytoca DSM 29614 unique capabilities of using Fe(III)-citrate as sole carbon and energy source in anaerobiosis and tolerating diverse metals coincides with the presence at the genomic level of specific genes that can support i) energy metabolism optimization, ii) cell protection by the biosynthesis of a peculiar exopolysaccharide armour entrapping metal ions and iii) general and metal-specific detoxifying activities by different proteins and metabolites
    • 

    corecore