3,884 research outputs found

    Caribbean Plate margin evolution : constraints and current problems

    Get PDF
    Oceanic crust was generated at multiple spreading centres during the Jurassic and Early Cretaceous, forming a "proto-Caribbean" oceanic domain. During the Cretaceous, part of that crustal domain thickened into an oceanic plateau, of petrologic Mid-Ocean Ridge (MOR) to Ocean Island Basalt (OIB) affinity. Simultaneously, the South and North American continental plates developed rifting and tholeiitic magmatism in the Middle America region (Venezuela and Cuba). The rifting created space for the proto-Caribbean oceanic domain. Petrological and regional correlations suggest that, beginning in the Cretaceous, the proto-Caribbean domain was involved into two main stages of subduction, referred to as first and second "eo-Caribbean" phases. Each phase is characterized by oblique convergence. The older (mid-Cretaceous) stage, involved in subduction (probably eastward dipping) of thin proto-Caribbean lithosphere, with generation of Island Arc Tholeiitic (IAT) and Calc-Alkaline (CA) magmatism, accompanied by high pressure - low temperature (HP - LT) metamorphic effects, and formation of arc units and ophiolitic melanges (Guatemala, Cuba, Hispaniola and Puerto Rico, in the northern margin; Venezuela in the southern). The Late Cretaceous second stage consisted of westward dipping intra-oceanic subduction; it is recorded by tonalitic arc magmatism related to the onset of the Aves - Lesser Antilles arc system. Since the Late Cretaceous, the inner undeformed portions of the Caribbean oceanic plateau (i.e. the Colombian and Venezuelan Basins) were trapped east of the Pacific subduction of the Chortis, Chorotega and Choco blocks, ultimately building the Central American Isthmus. From Tertiary to Present, continuous eastward movement of the Caribbean Plate with respect to the Americas, gave rise to transpression along both the northern and southern margins, marked by scattered and dismembered ophiolitic terranes

    Caribbean Plate margin evolution: constraints and current problems

    Get PDF
    Oceanic crust was generated at multiple spreading centres during the Jurassic and Early Cretaceous, forming a “proto-Caribbean” oceanic domain. During the Cretaceous, part of that crustal domain thickened into an oceanic plateau, of petrologic Mid-Ocean Ridge (MOR) to Ocean Island Basalt (OIB) affinity. Simultaneously, the South and North American continental plates developed rifting and tholeiitic magmatism in the Middle America region (Venezuela and Cuba). The rifting created space for the proto-Caribbean oceanic domain. Petrological and regional correlations suggest that, beginning in the Cretaceous, the proto-Caribbean domain was involved into two main stages of subduction, referred to as first and second “eo-Caribbean” phases. Each phase is characterized by oblique convergence. The older (mid-Cretaceous) stage, involved in subduction (probably eastward dipping) of thin proto-Caribbean lithosphere, with generation of Island Arc Tholeiitic (IAT) and Calc-Alkaline (CA) magmatism, accompanied by high pressure - low temperature (HP - LT) metamorphic effects, and formation of arc units and ophiolitic melanges (Guatemala, Cuba, Hispaniola and Puerto Rico, in the northern margin; Venezuela in the southern). The Late Cretaceous second stage consisted of westward dipping intra-oceanic subduction; it is recorded by tonalitic arc magmatism related to the onset of the Aves - Lesser Antilles arc system. Since the Late Cretaceous, the inner undeformed portions of the Caribbean oceanic plateau (i.e. the Colombian and Venezuelan Basins) were trapped east of the Pacific subduction of the Chortis, Chorotega and Choco blocks, ultimately building the Central American Isthmus. From Tertiary to Present, continuous eastward movement of the Caribbean Plate with respect to the Americas, gave rise to transpression along both the northern and southern margins, marked by scattered and dismembered ophiolitic terranes

    The supergiant fast X-ray transients XTE J1739-302 and IGR J08408-4503 in quiescence with XMM-Newton

    Full text link
    Context. Supergiant fast X-ray transients are a subclass of high mass X-ray binaries that host a neutron star accreting mass from the wind of its OB supergiant companion. They are characterized by an extremely pronounced and rapid variability in X-rays, which still lacks an unambiguous interpretation. A number of deep pointed observations with XMM-Newton have been carried out to study the quiescent emission of these sources and gain insight into the mechanism that causes their X-ray variability. Aims. We continued this study by using three XMM-Newton observations of the two supergiant fast X-ray transient prototypes XTEJ1739-302 and IGR J08408-4503 in quiescence. Methods. An in-depth timing and spectral analysis of these data have been carried out. Results. We found that the quiescent emission of these sources is characterized by both complex timing and spectral variability, with multiple small flares occurring sporadically after periods of lower X-ray emission. Some evidence is found in the XMM-Newton spectra of a soft component below ~2 keV, similar to that observed in the two supergiant fast X-ray transients AXJ1845.0-0433 and IGRJ16207-5129 and in many other high mass X-ray binaries. Conclusions.We suggest some possible interpretations of the timing and spectral properties of the quiescent emission of XTEJ1739- 302 and IGR J08408-4503 in the context of the different theoretical models proposed to interpret the behavior of the supergiant fast X-ray transients.Comment: 13 pages, 14 figures. Accepted for publication in A&A. V2: Corrected few typo

    XMM-Newton and INTEGRAL study of the SFXT IGR J18483-0311 in quiescence: hint of a cyclotron emission feature?

    Full text link
    We report the results from archival XMM-Newton and INTEGRAL observations of the Supergiant Fast X-ray Transient (SFXT) IGR J18483-0311 in quiescence. The 18-60 keV hard X-ray behaviour of the source is presented here for the first time, it is characterized by a spectral shape (Γ\Gamma about 2.5) similar to that during outburst activity and the lowest measured luminosity level is about 10^34 erg s^-1. The 0.5-10 keV luminosity state, measured by XMM-Newton during the apastron passage, is about one order of magnitude lower and it is reasonably fitted by an absorbed black body model yielding parameters consistent with previous measurements. In addition, we find evidence (about 3.5 sigma significance) of an emission-like feature at about 3.3 keV in the quiescent 0.5-10 keV source spectrum. The absence of any known or found systematic effects, which could artificially introduce the observed feature, give us confidence about its non-instrumental nature. We show that its physical explanation in terms of atomic emission line appears unlikely and conversely we attempt to ascribe it to an electron cyclotron emission line which would imply a neutron star magnetic field of the order of about 3x10^11 G. Importantly, such direct estimation is in very good agreement with that independently inferred by us in the framework of accretion from a spherically symmetric stellar wind. If firmly confirmed by future longer X-ray observations, this would be the first detection ever of a cyclotron feature in the X-ray spectrum of a SFXT, with important implications on theoretical models.Comment: accepted for publication in MNRAS letter, 5 pages, 3 figure

    A Machine Learning-Based Approach for Audio Signals Classification using Chebychev Moments and Mel-Coefficients

    Get PDF
    This paper proposes a machine learning-based architecture for audio signals classification based on a joint exploitation of the Chebychev moments and the Mel-Frequency Cepstrum Coefficients. The procedure starts with the computation of the Mel-spectrogram of the recorded audio signals; then, Chebychev moments are obtained projecting the Cadence Frequency Diagram derived from the Mel-spectrogram into the base of Chebychev moments. These moments are then concatenated with the Mel-Frequency Cepstrum Coefficients to form the final feature vector. By doing so, the architecture exploits the peculiarities of the discrete Chebychev moments such as their symmetry characteristics. The effectiveness of the procedure is assessed on two challenging datasets, UrbanSound8K and ESC-50

    A joint coregistration of rotated multitemporal SAR images based on the cross-cross-correlation

    Get PDF
    Accurate synthetic aperture radar (SAR) images coregistration is on the base of several remote sensing applications, such as interferometry, change detection, etc. This paper proposes a new algorithm for jointly coregister a stack of multitemporal SAR images exploiting the cross-correlations computed for each couple of patches' cross-correlation. By doing so, the method is capable of exploit also the respective misregistration information between the slave during the estimation process. This methodology is applied to improve the performance of the constrained Least Squares (CLS) optimization method that does not account for the reciprocal information related to the slaves. Tests on real-recorded data shown the benefits of the proposed method in terms of root mean square error (RMSE) for images affected by respective rotations

    Importance of the completeness of the configuration interaction and close coupling expansions in R-matrix calculations for highly-charged ions : electron-impact excitation of Fe20+

    Get PDF
    We have carried-out two intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of C-like Fe20+, both of which use the same expansions for their configuration interaction (CI) and close-coupling (CC) representations. The first expansion arises from the configurations 2s2 2p2, 2s 2p3, 2p4, {2s2 2p, 2s 2p2, 2p3} nl, with n = 3, 4, for l = 0−3, which give rise to 564 CI/CC levels. The second adds configurations 2s2 2p 5l, for l = 0 − 2, which give rise to 590 CI/CC levels in total. Comparison of oscillator strengths and effective collision strengths from these two calculations demonstrates the lack of convergence in data for n = 4 from the smaller one. Comparison of results for the 564 CI/CC level calculation with an earlier ICFT R-matrix calculation which used the exact same CI expansion but truncated the CC expansion to only 200 levels demonstrates the lack of convergence of the earlier data, particularly for n = 3 levels. Also, we find that the results of our 590 CC R-matrix calculation are significantly and systematically larger than those of an earlier comparable Distorted Wave-plus-resonances calculation. Thus, it is important still to take note of the (lack of) convergence in both atomic structural and collisional data, even in such a highly-charged ion as Fe20+, and to treat resonances non- perturbatively. This is of particular importance for Fe ions given their importance in the spectroscopic diagnostic modelling of astrophysical plasmas

    A comparison between standard and crossfeed monopulse radars in presence of rough sea scattering and ship movements

    Get PDF
    Monopulse radars are widely used in tracking systems, due to their relative simplicity and theoretical precision, but the presence of multipath impairs the tracking capabilities of these radars, especially when multipath signals are strong, as in a naval environment. A special monopulse setup, the crossfeed, has been proposed in the past to provide an automatic cancellation from smooth sea multipath. In this contribution, the performances of such a system are analyzed in presence of rough sea scattering and compared with those of a standard monopulse setup. Particular attention is devoted to performance degradations due to possible phase errors in the passive network implementing the comparator and due to ship rolling and pitching. This latter requires a full 3D monopulse simulator for its correct evaluation

    Case Report: Ictal Central Apnea as First and Overlooked Symptom in Temporal Lobe Seizures

    Get PDF
    Ictal respiratory changes have been mainly described following generalized tonic-clonic seizures and recently considered to be a biomarker to assess the risk of sudden unexplained death in epilepsy (SUDEP). Nonetheless, modification of respiratory pattern can be related also to focal seizures, especially arising from the temporal lobe. Changes in cardiac function such as tachycardia or bradycardia could be often associated. We report a short case series of four patients with temporal lobe epilepsy admitted to our Epilepsy Monitoring Unit (EMU) presenting with an ictal central apnea as the first clinical manifestation of their seizures. None of these patients was aware of the occurrence of respiratory arrest. Age at onset ranged from 15 to 29 years. One patient had seizures with prolonged central apnea accompanied by a significant decrease in oxygen saturation. Neuroimaging in two patients showed alterations of mesial temporal lobe structures, including the amygdala. Recent neurophysiological studies supported the existence of a cortical network involving the limbic system that modulates downstream brainstem respiratory centers. Monitoring for respiratory changes and oxygen saturation in focal seizures is warranted for their potential value in identifying the epileptogenic zone and for a better understanding of ictal respiratory changes that could potentially define a subgroup of patients with high risk of seizure-related autonomic changes
    corecore