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1 Introduction

Coregistration of multitemporal synthetic aperture radar (SAR)
images is one among the most important steps to be done
during the generation of interferograms or other SAR-related
products. As a matter of fact, an accurate coregistration pro-
cedure allows to remove differences in SAR images due to
the acquisition process rather than variations in the observed
scene. Therefore, coregistration has been been widely studied
during the years [1, 2] essentially following two compet-
ing approaches referred to as a) feature-based [3–6], and b)
area-based [7–11].

When dealing with a multitude of SAR images acquired at
different times, the coregistration is performed by setting one
image (typically the first acquisition) as master and the re-
mainder as slave. Then, each slave is separately coregistered
to the master without accounting for a respective displacement
with the other slaves. In this paper, the idea is to perform
a joint estimation of the required parameters considering a
unique coregistration of all slaves to the master jointly ac-
counting for the respective displacements among slaves during
the estimation process. By doing so, the method is capable of
providing a more robust estimate of the involved quantities.
Specifically, the method extends the constrained least squares
(CLS) algorithm designed in [10, 11] for rotated and translated
images using the information extracted from the cross-cross-
correlations (i.e., the cross-correlation with a couple of patches
cross-correlations) of the same patches centered in the identi-
fying extended targets/areas extracted from all images. Tests
conducted using the multitemporal Gotcha Volumetric SAR
Data Set V1.0 show the benefits that occur by using this jointly
estimation method in comparison with a standard one-by-one
registration procedure.

1.1 Notation

We use boldface lower case for vectors a and upper case for
matrices A. The symbols R and C denote the set of real and
complex numbers, respectively, and CK×N is the Euclidean
space of (K ×N)-dimensional complex matrices (or vectors
if N = 1). The symbols (·)T and (·)† denote the transpose
and conjugate transpose operators, respectively, while | · | and
‖ · ‖ are the modulus and Euclidean matrix norm, respectively.
Finally, j =

√
−1 is the imaginary unit.

2 Multitemporal SAR image coregistration
algorithm

Let us consider the availability of K images representative of
the same observed scene, Ik(z) ∈ CM×N , k = 0, . . . ,K − 1,
with z = x+ jy the complex variable describing the Carte-
sian coordinates x and y. Indicating, without loss of generality,
with Im(z) ∈ CM×N the image for k = 0 as master and with
Isk(z) ∈ CM×N , k = 1, . . . ,K − 1, the K − 1 slaves, the ef-
fect of pixels translation and rotation of a slave w.r.t. the master
can be defined as

Isk(z) = Im((z − δk)/αk) +Ek(z),

k = 1, . . . ,K − 1,
(1)

with Ek(z) the k-th error image accounting for noise and
different scattering properties, δk = δxk + jδyk the complex
displacement, and αk = γk exp[jθk] a scaling factor account-
ing for rotation (θk) and zooming (γk). The aim of the pro-
posed algorithm is to estimate the unknown parameters δk ∈ C
and θk ∈ R (having set γk = 1 to enforce the absence of a
zoom) for all the K − 1 slave images accounting also for their
respective misalignment in the problem formalization.

To do this, the proposed algorithm solves the constrained
Least Squares (CLS) problem developed in [10], properly
selecting the areas of interest in the images as in [11]. In partic-
ular, once the patches from the master and slaves are extracted,
a cross-cross-correlation based method, devised in [12] for
delay estimation for 1-dimentional signals, is applied to con-
struct the overall displacement field of the stack of images with
respect to their master.

The proposed algorithm is described by the functional
scheme shown in Figure 1 whose main steps are detailed in
the following.

The starting input of the algorithm is the image selected to
be the master that is used to apply the procedure developed
in [11] to properly select the patches needed for the displace-
ment field evaluation. In particular, the method of [11] applies
a constant false alarm rate (CFAR) [13] detection scheme to
the entire image to detect strong reflective areas. The resulting
binary detection map is then improved thanks to a clustering
and false alarms cancellation procedure. In fact, the cluster-
ing based on the use of an order filter allows to improve the
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Fig. 1. Block scheme of the multitemporal SAR images coregistration algorithm based on the cross-cross-correlation.

shape of the detected object/area exploiting the behavior of
the neighboring pixels of that under test. Meanwhile, the false
alarm cancellation, based on a median filter, is performed to
delete all noisy single detections belonging to the map. Once
the extended objects are definitely obtained, their centroids are
evaluated as their center of mass. Then, for each centroid in the
master, a patch in its center is extracted from both the master
and all slave images and all possible cross-correlations between
corresponding patches in the K images are computed. Addi-
tionally, the cross-correlations between each couple of patch
cross-correlations are evaluated before constructing the overall
displacement field needed to solve the CLS problem detailed in
Section 2.1.

2.1 CLS formulation

The CLS problem designed in [10] allows the registration of a
slave image Is(z) ∈ CM×N , affected by rotation and shift, to
a master Im(z) ∈ CM×N representative of the same observed
scene. To do this, the method needs to identify some tie-
points (described in Section 2.2) in both the master and slave,
here indicated as zl = (xm,l + jym,l), and ζl = xs,l + jys,l,
l = 1, . . . , L, respectively. Then, the displacement field be-
tween them is the solution of a constrained over-determined
linear system of L equations in 3 unknowns [10]{

arg min
p
‖Zp− ζ‖2

s.t. p†Dp− 1 = 0
, (2)

with

p =

[
α
δ

]
, Z =

z1 1
...

...
zL 1

 , D =

[
1 0
0 0

]
, and ζ =

ζ1...
ζL

 ,
with the coordinates ζ1, . . . , ζL expressed with respect to the
reference system centered at the image center.

2.2 Cross-cross-correlation

A standard procedure to estimate the displacement field in
(2), viz. ζl, l = 1, . . . , L, consists in evaluating the position
of the peak in the magnitude of cross-correlation between
corresponding patches in the master and slave as

[ŷ, x̂]
k

= arg max
y,x
{|Gk(y, x)|} , k = 1, . . . ,K. (3)

where

Gk(y, x) =

M−1∑
m=0

N−1∑
n=0

Pm(m,n)P ∗s(m− y, n− x),

− (N − 1) ≤ y ≤ (M − 1),

− (N − 1) ≤ x ≤ (M − 1)

(4)

is the spatial cross-correlation of the quoted couple of patches
Pm and P s in the master and slave, respectively. Note that, in
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the previous equations we have omitted the subscript s to indi-
cate that x and y are the displacement in the x- and y-direction
of the patch associated to a slave image.

Beyond the classic cross-correlation G evaluated with re-
spect to the master, it is possible to consider all possible couples
of images (discarding the auto-correlation). In this case, the
total number of possible combinations of K images is Q =
(K2 −K) /2. Additionally, it would be useful to derive the
cross-correlation and convolution (say conv-cross-correlation)
between each couple of images cross-correlations, in order to
obtain T = K4/4−K3/2−K2/4 +K/2 combinations.

The cross-cross-correlation and the conv-cross-correlation
can be, respectively, defined as

Cijlp(ρy, ρx) =

M+N−1∑
y=0

M+N−1∑
x=0

Gij(y, x)G∗lp(y − ρy, x− ρx),

− (M +N − 1) ≤ ρy ≤ (M +N − 1),

− (M +N − 1) ≤ ρx ≤ (M +N − 1)
(5)

and

F ijlp(ρy, ρx) =

M+N−1∑
y=0

M+N−1∑
x=0

Gij(y, x)Glp(ρy − y, ρx − x),

− (M +N − 1) ≤ ρy ≤ (M +N − 1),

− (M +N − 1) ≤ ρx ≤ (M +N − 1)
(6)

The apex of the magnitude of the cross-cross-correlation,
|Cijlm(ρy, ρx)|, should be at the index

[yi − yj − yl + yp, xi − xj − xl + xp] ,

while that of |F ijlm(ρy, ρx)| should be at the index

[yi − yj + yl − yp, xi − xj + xl − xp] .

Hence, we can estimate theK − 1 displacements in the MMSE
sense solving the overdetermined system made by the T equa-
tions, consisting of the linear combination of the K − 1 un-
knowns equal to the index of the maximum of the standard and
flipped cross-cross-correlations considered in (5) and (6), that
is

[yi − yj − yl + yp, xi − xj − xl + xp] = [ρ̄y, ρ̄x]ijlp

i, j, l, p = 0, . . . ,K − 1 (j > i and p > l),
(7)

and

[yi − yj + yl − yp, xi − xj + xl − xp] = [ρ̆y, ρ̆x]ijlp

i, j, l, p = 0, . . . ,K − 1 (j > i and p > l),
(8)

where

[ρ̄y, ρ̄x]ijlp = arg max
ρy,ρx

{|Cijlp(ρy, ρx)|} , (9)

and
[ρ̆y, ρ̆x]ijlp = arg max

ρy,ρx
{|F ijlp(ρy, ρx)|} . (10)

Resorting to a compact matrix form, (7)-(8) can be rewritten
as

M [y,x] =
[
ρy,ρx

]
, (11)

with

[y,x] =

 y1 x1

...
...

yK−1 xK−1

 ,

[
ρy,ρx

]
=



ρ̄y0102 ρ̄x0102

...
ρ̄y(K−3)(K−1)(K−2)(K−1)

ρ̄x(K−3)(K−1)(K−2)(K−1)

ρ̆y0102 ρ̆x0102

...
ρ̆y(K−3)(K−1)(K−2)(K−1)

ρ̆x(K−3)(K−1)(K−2)(K−1)


The model matrix M of size T × (K − 1) depends only on

the number of multitemporal images K and comprises several
null elements and some non-zero elements equal to±1 and±2
(the values ±1 are related to measurements where an image
is involved in a single operation, e.g., one cross-correlation.
Whereas, the values ±2 are related to measurements where
an image is involved twice, e.g., in both the cross-correlations
used in the cross-cross). For this reason it can be computed and
a-priori stored reducing the computational complexity in real-
time algorithms. In fact, the solution to (11) is obtained through
the pseudo-inverse ofM , that is

[ŷ, x̂] =
(
MTM

)−1
MT

[
ρy,ρx

]
. (12)

Finally, these values are used to construct the displacement
field for rotation angle and displacement estimation in (2).

3 Performance assessment

This section is aimed at assessing the performance of the
proposed method for joint coregistration of multitemporal
SAR images. Tests are conducted on the challenging full-
polarimetric Gotcha Volumetric SAR Data Set V1.0 [14], char-
acterized by having a full azimuth coverage and eight different
elevation angles with images acquired at different time in-
stants. The sensor used for the acquisitions is located on a
plane and operates at a carrier frequency of 9.6 GHz with
a wide bandwidth of 640 MHz. The observed scene is a car
parking containing several civilian vehicles (cars, forklift, trac-
tor) and also calibration targets. For the conducted study, the
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aperture was divided in azimuth sub-apertures of 4◦, providing
approximately equal range-azimuth resolution cells of 23 cm.
By doing so, the resulting dataset comprises 90 images (looks)
of 501× 501 pixels for each of the 8 circular passes (different
elevations) in the four polarisations (viz., HH, VV, HV, VH). To
better understand the observed scene, Figure 2 depicts the span
(expressed in dB) of the full-polarimetric Gotcha SAR image
at 0− 3 degrees in azimuth.
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Fig. 2 Span (dB) of the full-polarimetric Gotcha SAR image at
0◦ azimuth.

In the next tests, without loss of generality, we focus on
the HH polarization, considering all eight passes of acquisition
once the azimuth angle has been fixed; then, the master is cho-
sen to be the image at pass 0, whereas the slaves are those from
pass 1 to 7. Since, the Gotcha images are provided already reg-
istered each other, in the devised tests, each slave is clockwise
or counterclockwise rotated by an angle θk, k = 1, . . . ,K − 1,
followed by a nearest neighbor interpolation to compensate the
non-integer translation of the pixels.

The analyses are conducted considering as figure of merit
the root mean square error (RMSE) of the estimated angles

RMSE =

√
E
[∥∥∥θ − θ̂∥∥∥2], (13)

where θ = [θ1, . . . , θ7]
T is the vector containing the seven

angles to estimate, whereas θ̂ is the vector containing their esti-
mates. Now, because of the lack of a closed form expression for
the RMSE, it is numerically evaluated resorting to the Monte
Carlo simulation procedure. More precisely, at each Monte
Carlo trial, i = 1, . . . ,Mc (with Mc the number of runs), each
slave image is rotated by an angle θk, k = 1, . . . , 7, randomly
chosen in the interval [−2◦, 2◦].

The first test aims at empirically evaluating the optimum
choice for the patch size. In fact, the size of the patches ex-
tracted from the imagery will directly impact on the final
coregistration performance. This size can be a-priori set based

on considerations about the overall image extent as well as the
size of targets that are expected to be in it contained. Hence,
Fig. 3 shows the RMSE (expressed in ◦) versus the patch size,
having considered, without loss of generality, square shaped
patches. The curves are related to the sequence of 8 images for
three different azimuth angles, viz. 0◦, 176◦, and 356◦. More-
over, the RMSE is evaluated over a total of Mc = 100 Monte
Carlo runs chosen the true rotation angles as above described.
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Fig. 3 RMSE (◦) versus patch size for three sequences of 8
SAR images acquired at different azimuth angles, viz. 0◦, 176◦,
and 356◦. A total of 100 Monte Carlo runs is performed ran-
domly selecting the rotation angles in the interval [−2◦, 2◦].

As expected the three curves show a coherent behavior each
other. In fact, the RMSE is higher when the patch size is cho-
sen to be very small (in this case, possible extended targets are
spread over more patches) and also when it is chosen to be too
much large (in this case, more than one target could be con-
tained in the same patch). In particular, from the graph, it can be
assured that the optimal patch size for these images is between
18× 18 and 32× 32 pixels.

For the above mentioned reason, in the successive tests,
we set the patch size equal to 25× 25 and 30× 30 pixels.
Therefore, Figs. 4 and 5 compare the proposed method, indi-
cated as joint CLS (JCLS), with the CLS of [11] evaluating
their achieved RMSE values for each slave image. The tests
are again conducted for the same settings as in the previous
analyses with the results achieved for the three different az-
imuth angles (viz. 0◦, 176◦, and 356◦) shown in the respective
subplots.

The graphical bars emphasize the superiority of the JCLS
in jointly estimating the involved rotation angles. In fact, even
if for some specific images the RMSE of the JCLS is slightly
higher than that of the CLS, it gains much more for the others.
In fact, the RMSE values shown by the JCLS are mostly homo-
geneous, whereas those of the CLS are strongly unbalanced.
Therefore, we can conclude that the JCLS tends to mitigate
the rotation angle estimation performance to provide a more
balanced situation between the involved image stack.
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Fig. 4 RMSE (◦) for each slave of the JCLS and CLS algo-
rithms. The patch size is set to 25× 25 pixels and subplots refer
to 8 SAR images acquired at eight different elevations (marked
by the image index). Moreover, three different tests are con-
ducted fixing the azimuth angles to a) 0◦, b) 176◦, and c) 356◦.
A total of 100 Monte Carlo runs is performed randomly select-
ing the rotation angles in the interval [−2◦, 2◦].

4 Conclusions

This paper has focused on the design of new coregistration
algorithm for multitemporal SAR images. The focus of the
devised method is the joint estimation of the registration pa-
rameters for all slave images, namely accounting at the design
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Fig. 5 RMSE (◦) for each slave of the JCLS and CLS algo-
rithms. The patch size is set to 30× 30 pixels and subplots refer
to 8 SAR images acquired at eight different elevations (marked
by the image index). Moreover, three different tests are con-
ducted fixing the azimuth angles to a) 0◦, b) 176◦, and c) 356◦.
A total of 100 Monte Carlo runs is performed randomly select-
ing the rotation angles in the interval [−2◦, 2◦].

stage the respective displacements between slaves. Based on
the exploitation of the cross-cross-correlations, the derived
method is capable of ensuring a more robust behavior of the
registration algorithm for all the involved slave images in the
considered stack. Results conducted on real-recorded data have
demonstrated the validity of the devised model.
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