53 research outputs found

    Discrete Symmetry Approach to Lepton Flavour, Neutrino Mixing and Leptonic CP Violation, and Neutrino Related Physics Beyond the Standard Theory

    Get PDF
    The experimental evidences of neutrino oscillation, caused by non-zero neutrino masses and neutrino mixing, which were obtained in the experiments with solar, atmospheric, accelerator and reactor neutrinos, opened new field of research in elementary particle physics. The principal goal is to understand at fundamental level the mechanism giving rise to non-zero neutrino masses and neutrino mixing. The open fundamental questions include those of the nature \u2014 Dirac or Majorana \u2014 of massive neutrinos, of the type of spectrum neutrino masses obey, of the status of CP symmetry in the lepton sector, of the absolute scale of neutrino masses, and more generally, of understanding the origin of flavour in particle physics. The smallness of neutrino masses suggests that their values are related to the existence of a new fundamental mass (energy scale) in particle physics, i.e., to New Physics beyond that predicted by the Standard Theory. The New Physics can manifest itself in the Majorana nature of massive neutrinos, in the existence of sterile neutrinos with masses at the eV scale, in the existence of new non-standard interactions (NSI) of neutrinos, etc. The present Ph.D. thesis explores aspects of this neutrino-related New Physics. More specifically, we first employ the discrete flavour symmetry approach i) to construct a self-consistent theory of lepton flavour, ii) to understand the pattern of neutrino mixing and to describe it quantitatively, and iii) to derive predictions for leptonic Dirac CP violation. Next we investigate the effects of existence of sterile neutrinos with a Majorana mass at the eV scale on the predictions for the neutrinoless double beta decay effective Majorana mass. Further we present a possible interpretation of the results of the reactor neutrino and accelerator experiments (Daya Bay, RENO, Double Chooz and T2K) on the reactor angle \u3b813 in the neutrino mixing matrix in terms of non-standard interactions (NSI) of neutrinos. We also analyse the signatures of sterile neutrinos in reactor antineutrino experiments and, in particular, constrain the active-sterile mixing angle using the high-precision data of the Daya Bay reactor experiment. We finally investigate the impact of sterile neutrinos on precision measurements of the standard neutrino oscillation parameters in the upcoming neutrino experiment JUNO

    Constraining Sterile Neutrinos Using Reactor Neutrino Experiments

    Full text link
    Models of neutrino mixing involving one or more sterile neutrinos have resurrected their importance in the light of recent cosmological data. In this case, reactor antineutrino experiments offer an ideal place to look for signatures of sterile neutrinos due to their impact on neutrino flavor transitions. In this work, we show that the high-precision data of the Daya Bay experi\-ment constrain the 3+1 neutrino scenario imposing upper bounds on the relevant active-sterile mixing angle sin22θ140.06\sin^2 2 \theta_{14} \lesssim 0.06 at 3σ\sigma confidence level for the mass-squared difference Δm412\Delta m^2_{41} in the range (103,101)eV2(10^{-3},10^{-1}) \, {\rm eV^2}. The latter bound can be improved by six years of running of the JUNO experiment, sin22θ140.016\sin^22\theta_{14} \lesssim 0.016, although in the smaller mass range Δm412(104,103)eV2 \Delta m^2_{41} \in (10^{-4} ,10^{-3}) \, {\rm eV}^2. We have also investigated the impact of sterile neutrinos on precision measurements of the standard neutrino oscillation parameters θ13\theta_{13} and Δm312\Delta m^2_{31} (at Daya Bay and JUNO), θ12\theta_{12} and Δm212\Delta m^2_{21} (at JUNO), and most importantly, the neutrino mass hierarchy (at JUNO). We find that, except for the obvious situation where Δm412Δm312\Delta m^2_{41}\sim \Delta m^2_{31}, sterile states do not affect these measurements substantially.Comment: 23 pages, 9 figures, more discussions added, matches the published versio

    Generalised Geometrical CP Violation in a T\u27 Lepton Flavour Model

    Get PDF
    We analyse the interplay of generalised CP transformations and the non-Abelian discrete group T ′ and use the semi-direct product G f = T ′ ⋊ H CP , as family symmetry acting in the lepton sector. The family symmetry is shown to be spontaneously broken in a geometrical manner. In the resulting flavour model, naturally small Majorana neutrino masses for the light active neutrinos are obtained through the type I see-saw mechanism. The known masses of the charged leptons, lepton mixing angles and the two neutrino mass squared differences are reproduced by the model with a good accuracy. The model allows for two neutrino mass spectra with normal ordering (NO) and one with inverted ordering (IO). For each of the three spectra the absolute scale of neutrino masses is predicted with relatively small uncertainty. The value of the Dirac CP violation (CPV) phase δ in the lepton mixing matrix is predicted to be δ = π/ 2 or 3 π/ 2. Thus, the CP violating effects in neutrino oscillations are predicted to be maximal (given the values of the neutrino mixing angles) and experimentally observable. We present also predictions for the sum of the neutrino masses, for the Majorana CPV phases and for the effective Majorana mass in neutrinoless double beta decay. The predictions of the model can be tested in a variety of ongoing and future planned neutrino experiments

    predictions for the dirac phase in the neutrino mixing matrix and sum rules

    Get PDF
    Using the fact that the neutrino mixing matrix U = U†eUν, where Ue and Uv result from the diagonalisation of the charged lepton and neutrino mass matrices, we analyse the sum rules which the Dirac phase δ present in U satisfies when Uv has a form dictated by, or associated with, discrete symmetries and Ue has a "minimal" form (in terms of angles and phases it contains) that can provide the requisite corrections to Uv, so that reactor, atmospheric and solar neutrino mixing angles θ13, θ23 and θ12 have values compatible with the current data. The following symmetry forms are considered: i) tri-bimaximal (TBM), ii) bimaximal (BM) (or corresponding to the conservation of the lepton charge L' = Le — Lμ — Lτ (LC)), iii) golden ratio type A (GRA), iv) golden ratio type B (GRB), and v) hexagonal (HG). We investigate the predictions for 5 in the cases of TBM, BM (LC), GRA, GRB and HG forms using the exact and the leading order sum rules for cos δ proposed in the literature, taking into account also the uncertainties in the measured values of sin2 θ12, sin2 θ23 and sin2 θ13. This allows us, in particular, to assess the accuracy of the predictions for cos δ based on the leading order sum rules and its dependence on the values of the indicated neutrino mixing parameters when the latter are varied in their respective 3σ experimentally allowed ranges

    Primary cutaneous aggressive epidermotropic cytotoxic T-cell lymphomas: reappraisal of a provisional entity in the 2016 WHO classification of cutaneous lymphomas.

    Get PDF
    Primary cutaneous CD8-positive aggressive epidermotropic T-cell lymphoma is a rare and poorly characterized variant of cutaneous lymphoma still considered a provisional entity in the latest 2016 World Health Organization Classification of Cutaneous lymphomas. We sought to better characterize and provide diagnostic and therapeutic guidance of this rare cutaneous lymphoma. Thirty-four patients with a median age of 77 years (range 19-89 years) presented primarily with extensive annular necrotic plaques or tumor lesions with frequent mucous membrane involvement. The 5-year survival was 32% with a median survival of 12 months. A subset of 17 patients had a prodrome of chronic patches prior to the development of aggressive ulcerative lesions. We identified cases with lack of CD8 or αβ T-cell receptor expression yet with similar clinical and pathological presentation. Allogeneic stem cell transplantation provided partial or complete remissions in 5/6 patients. We recommend the term primary cutaneous aggressive epidermotropic cytotoxic T-cell lymphoma as this more broad designation better describes this clinical-pathologic presentation, which allows the inclusion of cases with CD8 negative and/or αβ/γδ T-cell receptor chain double-positive or double-negative expression. We have identified early skin signs of chronic patch/plaque lesions that are often misdiagnosed as eczema, psoriasis, or mycosis fungoides. Our experience confirms the poor prognosis of this entity and highlights the inefficacy of our standard therapies with the exception of allogeneic stem cell transplantation in selected cases

    Staphylococcal enterotoxin A (SEA) stimulates STAT3 activation and IL-17 expression in cutaneous T-cell lymphoma

    Get PDF
    Cutaneous T-cell lymphoma (CTCL) is characterized by proliferation of malignant T cells in a chronic inflammatory environment. With disease progression, bacteria colonize the compromised skin barrier and half of CTCL patients die of infection rather than from direct organ involvement by the malignancy. Clinical data indicate that bacteria play a direct role in disease progression, but little is known about the mechanisms involved. Here, we demonstrate that bacterial isolates containing staphylococcal enterotoxin A (SEA) from the affected skin of CTCL patients, as well as recombinant SEA, stimulate activation of signal transducer and activator of transcription 3 (STAT3) and upregulation of interleukin (IL)-17 in immortalized and primary patient-derived malignant and nonmalignant T cells. Importantly, SEA induces STAT3 activation and IL-17 expression in malignant T cells when cocultured with nonmalignant T cells, indicating an indirect mode of action. In accordance, malignant T cells expressing an SEA-nonresponsive T-cell receptor variable region β chain are nonresponsive to SEA in monoculture but display strong STAT3 activation and IL-17 expression in cocultures with SEA-responsive nonmalignant T cells. The response is induced via IL-2 receptor common γ chain cytokines and a Janus kinase 3 (JAK3)-dependent pathway in malignant T cells, and blocked by tofacitinib, a clinical-grade JAK3 inhibitor. In conclusion, we demonstrate that SEA induces cell cross talk-dependent activation of STAT3 and expression of IL-17 in malignant T cells, suggesting a mechanism whereby SEA-producing bacteria promote activation of an established oncogenic pathway previously implicated in carcinogenesis

    Generalised geometrical CP violation in a T' lepton flavour model

    Get PDF
    We analyse the interplay of generalised CP transformations and the non-Abelian discrete group T \u2032 and use the semi-direct product G f = T \u2032 caH CP, as family symmetry acting in the lepton sector. The family symmetry is shown to be spontaneously broken in a geometrical manner. In the resulting flavour model, naturally small Majorana neutrino masses for the light active neutrinos are obtained through the type I see-saw mechanism. The known masses of the charged leptons, lepton mixing angles and the two neutrino mass squared differences are reproduced by the model with a good accuracy. The model allows for two neutrino mass spectra with normal ordering (NO) and one with inverted ordering (IO). For each of the three spectra the absolute scale of neutrino masses is predicted with relatively small uncertainty. The value of the Dirac CP violation (CPV) phase \u3b4 in the lepton mixing matrix is predicted to be \u3b4 = \u3c0/2 or 3\u3c0/2. Thus, the CP violating effects in neutrino oscillations are predicted to be maximal (given the values of the neutrino mixing angles) and experimentally observable. We present also predictions for the sum of the neutrino masses, for the Majorana CPV phases and for the effective Majorana mass in neutrinoless double beta decay. The predictions of the model can be tested in a variety of ongoing and future planned neutrino experiments

    The interplay among psychopathology, personal resources, context-related factors and real-life functioning in schizophrenia: stability in relationships after 4 years and differences in network structure between recovered and non-recovered patients

    Get PDF
    Improving real-life functioning is the main goal of the most advanced integrated treatment programs in people with schizophrenia. The Italian Network for Research on Psychoses previously explored, by using network analysis, the interplay among illness-related variables, personal resources, context-related factors and real-life functioning in a large sample of patients with schizophrenia. The same research network has now completed a 4-year follow-up of the original sample. In the present study, we used network analysis to test whether the pattern of relationships among all variables investigated at baseline was similar at follow-up. In addition, we compared the network structure of patients who were classified as recovered at follow-up versus those who did not recover. Six hundred eighteen subjects recruited at baseline could be assessed in the follow-up study. The network structure did not change significantly from baseline to follow-up, and the overall strength of the connections among variables increased slightly, but not significantly. Functional capacity and everyday life skills had a high betweenness and closeness in the network at follow-up, as they had at baseline, while psychopathological variables remained more peripheral. The network structure and connectivity of non-recovered patients were similar to those observed in the whole sample, but very different from those in recovered subjects, in which we found few connections only. These data strongly suggest that tightly coupled symptoms/dysfunctions tend to maintain each other's activation, contributing to poor outcome in schizophrenia. Early and integrated treatment plans, targeting variables with high centrality, might prevent the emergence of self-reinforcing networks of symptoms and dysfunctions in people with schizophrenia
    corecore