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Predictions for the Dirac Phase in the Neutrino

Mixing Matrix and Sum Rules

I. Girardia) 1, S. T. Petcova,b) 2, A. V. Titova)

a SISSA/INFN, Via Bonomea 265, 34136 Trieste, Italy
b Kavli IPMU (WPI), University of Tokyo, 5-1-5 Kashiwanoha, 277-8583 Kashiwa, Japan

Abstract. Using the fact that the neutrino mixing matrix U = U†
eUν , where Ue and Uν

result from the diagonalisation of the charged lepton and neutrino mass matrices, we analyse
the sum rules which the Dirac phase δ present in U satisfies when Uν has a form dictated
by, or associated with, discrete symmetries and Ue has a “minimal” form (in terms of angles
and phases it contains) that can provide the requisite corrections to Uν , so that reactor,
atmospheric and solar neutrino mixing angles θ13, θ23 and θ12 have values compatible with
the current data. The following symmetry forms are considered: i) tri-bimaximal (TBM), ii)
bimaximal (BM) (or corresponding to the conservation of the lepton charge L′ = Le−Lµ−Lτ
(LC)), iii) golden ratio type A (GRA), iv) golden ratio type B (GRB), and v) hexagonal (HG).
We investigate the predictions for δ in the cases of TBM, BM (LC), GRA, GRB and HG
forms using the exact and the leading order sum rules for cos δ proposed in the literature,
taking into account also the uncertainties in the measured values of sin2 θ12, sin2 θ23 and
sin2 θ13. This allows us, in particular, to assess the accuracy of the predictions for cos δ
based on the leading order sum rules and its dependence on the values of the indicated
neutrino mixing parameters when the latter are varied in their respective 3σ experimentally
allowed ranges.

1. Introduction
One of the major goals of the future experimental studies in neutrino physics is the searches
for CP violation (CPV) effects in neutrino oscillations (see, e.g., [1, 2]). It is part of a more
general and ambitious program of research aiming to determine the status of the CP symmetry
in the lepton sector.

In the case of 3-neutrino mixing reference scheme and massive Majorana neutrinos we are
going to consider, the CP symmetry can be violated in the lepton sector by the presence of
one Dirac and two Majorana [3] CPV phases in the 3×3 unitary Pontecorvo, Maki, Nakagawa
and Sakata (PMNS) neutrino mixing matrix. If the Dirac phase δ has a CP-non-conserving
value, i.e., if δ 6= 0, π, this will induce, as is well known, CPV effects in neutrino oscillations,

1 Talk given by the author at DISCRETE 2014, 3 December 2014, London, England.
2 Also at: Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia,
Bulgaria.
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i.e., the CP-violating asymmetry Al,l
′

CP ≡ P (νl → νl′) − P (ν̄l → ν̄l′), l 6= l′ = e, µ, τ , for
neutrino oscillations in vacuum, will be different from zero. Here P (νl → νl′) and P (ν̄l → ν̄l′),
l, l′ = e, µ, τ , are the flavour neutrino oscillation probabilities, which do not depend on the
Majorana phases as was shown in [3, 4].

In the present study we will be concerned with predictions for the Dirac phase δ. More
specifically, we will be interested in the predictions for the Dirac CPV phase δ which are
based on the so-called “sum rules” for cos δ [5–7] (see also, e.g., [8–10]). The sum rules of
interest appear in an approach aiming at quantitative understanding of the pattern of neutrino
mixing on the basis of symmetry considerations. In this approach one exploits the fact that,
up to perturbative corrections, the PMNS matrix has an approximate form, Uν , which can be
dictated by symmetries. The matrix Uν is assumed to originate from the diagonalisation of
the neutrino Majorana mass term 3. The angles in Uν have specific symmetry values which
differ, in general, from the experimentally determined values of the PMNS angles θ12, θ13
and θ23, and thus need to be corrected. The requisite perturbative corrections, which modify
the values of the angles in Uν to coincide with the measured values of θ12, θ13 and θ23, are
provided by the matrix Ue arising from the diagonalisation of the charged lepton mass matrix,

U = U †e Uν . In the sum rules we will analyse in detail the Dirac phase δ, more precisely, cos δ,
is expressed, in general, in terms of the mixing angles θ12, θ13 and θ23 of the PMNS matrix
U and the angles present in Uν , whose values are fixed, being dictated by an underlying
approximate discrete symmetry of the lepton sector (see, e.g., [9]).

A more detailed analysis can be found in ref. [11], on which this contribution is based.

2. The Sum Rules
In the framework of the reference 3 flavour neutrino mixing we will consider, the PMNS
neutrino mixing matrix is always given by

U = U †eUν , (1)

where Ue and Uν are 3×3 unitary matrices originating from the diagonalisation of the charged
lepton and the neutrino (Majorana) mass terms. As we have already indicated, we will suppose
in what follows that Uν has a form which is dictated by symmetries. More specifically, we
will assume that

Uν = Ψ1 Ũν Q0 = Ψ1R23 (θν23)R12 (θν12)Q0 , (2)

where R23(θ
ν
23) and R12(θ

ν
12) are orthogonal matrices describing clockwise rotations in the 2-3

and 1-2 planes, respectively, and Ψ1 and Q0 are diagonal phase matrices each containing two
phases. Obviously, the phases in the matrix Q0 give contribution to the Majorana phases
in the PMNS matrix. We will consider the following symmetry forms of the matrix Ũν : i)
tri-bimaximal (TBM) [12], ii) bimaximal (BM), or due to a symmetry corresponding to the
conservation of the lepton charge L′ = Le − Lµ − Lτ (LC) [13, 14], iii) golden ratio type
A (GRA) form [15, 16], iv) golden ratio type B (GRB) form [17], and v) hexagonal (HG)
form [18,19]. The TBM, BM, GRA, GRB and HG forms can be obtained respectively from,
e.g., T ′, A4, A5, D10 and D12 discrete (lepton) flavour symmetries (see, e.g., [9,15–17,19–21]).

3 It is worth noticing that, since we are not interested in the predictions for the Majorana phases in this work,
the results we are going to present will be valid also in the case of Dirac massive neutrinos.
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In all these cases we have θν23 = −π/4, and the matrix Ũν is given by

Ũν =


cos θν12 sin θν12 0

−sin θν12√
2

cos θν12√
2

− 1√
2

−sin θν12√
2

cos θν12√
2

1√
2

 . (3)

The TBM, BM (LC), GRA, GRB and HG forms of Ũν correspond to different fixed values
of θν12 and thus of sin2 θν12, namely, to i) sin2 θν12 = 1/3, ii) sin2 θν12 = 1/2, iii) sin2 θν12 =
(2 + r)−1 ∼= 0.276, r being the golden ratio, r = (1 +

√
5)/2, iv) sin2 θν12 = (3− r)/4 ∼= 0.345,

and v) sin2 θν12 = 1/4. Thus, the matrix Ue in eq. (1) should provide corrections which
not only generate non-zero value of θ13, but also lead to reactor, atmospheric and solar
neutrino mixing angles θ13, θ23 and θ12 which have values compatible with the current
data, including a possible sizeable deviation of θ23 from π/4. As was shown in [5], the
“minimal” form of Ue, in terms of angles and phases it contains, that can provide the requisite
corrections to Uν includes a product of two orthogonal matrices describing clockwise rotations
in the 2-3 and 1-2 planes, R23(θ

e
23) and R12(θ

e
12), θ

e
23 and θe12 being two (real) angles [5]:

Ue = Ψ†2 Ũe = Ψ†2R
−1
23 (θe23)R

−1
12 (θe12), where Ψ2 is a diagonal phase matrix including two

phases.
In the setting considered the PMNS matrix can be recast in the form [5]:

U = R12(θ
e
12) Φ(φ)R23(θ̂23)R12(θ

ν
12) Q̂ , (4)

where φ = arg(e−iψ cos θe23 + e−iω sin θe23), sin2 θ̂23 = 1/2− sin θe23 cos θe23 cos(ω − ψ), and Q̂ is
a diagonal phase matrix contributing to the Majorana phases.

From the comparison of the parametrisation of U , given in eq. (4), with the standard
one [1], it follows that the four observables θ12, θ23, θ13 and δ are functions of three parameters

θe12, θ̂23 and φ. As a consequence, the Dirac phase δ can be expressed as a function of the
three PMNS angles θ12, θ23 and θ13 [5], leading to a new “sum rule” relating δ and θ12, θ23
and θ13. For an arbitrary fixed value of the angle θν12 the sum rules for cos δ and cosφ read [6]:

sin2 θ12 = cos2 θν12 +
sin 2θ12 sin θ13 cos δ − tan θ23 cos 2θν12

tan θ23(1− cot2 θ23 sin2 θ13)
, (5)

sin2 θ12 = cos2 θν12 +
1

2
sin 2θ23

sin 2θν12 sin θ13 cosφ− tan θ23 cos 2θν12
(1− cos2 θ23 cos2 θ13)

. (6)

Within the scheme considered the sum rules eqs. (5) – (6) are exact.
A parametrisation of the PMNS matrix, similar to that used by us, has been effectively

employed in ref. [7]: the hierarchy of values of the angles in the matrices Ue and Uν assumed
in [7] leads the authors to consider the angles θe13 and θν13 of the 1-3 rotations in Ue and Uν as
negligibly small. Treating sin θe12 and sin θe23 as small parameters, | sin θe12| � 1, | sin θe23| � 1,
neglecting terms of order of, or smaller than, O((θe12)

2), O((θe23)
2) and O(θe12θ

e
23), and taking

into account that in this approximation we have sin θe12 =
√

2 sin θ13, the following “leading
order” sum rule was obtained in [7]:

θ12 ∼= θν12 + θ13 cos δ . (7)
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This sum rule can be derived from the sum rule

sin θ12 ∼= sin θν12 +
sin 2θν12
2 sin θν12

sin θ13 cos δ , (8)

by treating sin 2θν12 sin θ13 cos δ ∼= sin 2θν12θ13 cos δ as a small parameter and using the Taylor

expansion sin−1(a+ b x) ∼= sin−1(a) + b x/
√

1− a2, valid for |bx| � 1.
From eqs. (5) and (6), employing the approximations used in ref. [7], we get:

sin2 θ12 ∼= sin2 θν12 + sin 2θ12 sin θ13 cos δ , (9)

sin2 θ12 ∼= sin2 θν12 + sin 2θν12 sin θ13 cosφ . (10)

The first equation leads (in the leading order approximation used to derive it and using
sin 2θ12 ∼= sin 2θν12) to eq. (7), while from the second equation we find

sin θ12 ∼= sin θν12 +
sin 2θν12
2 sin θν12

sin θ13 cosφ , (11)

and correspondingly,
θ12 ∼= θν12 + θ13 cosφ . (12)

This implies that in the leading order approximation adopted in ref. [7] we have [6] cos δ ∼=
cosφ. Note, however, that the sum rules for cos δ and cosφ given in eqs. (9) and (10), differ
somewhat by the factors multiplying the terms ∼ sin θ13.

As was shown in [6], the leading order sum rule (7) leads in the cases of TBM, GRA,
GRB and HG forms of Ũν to largely imprecise predictions for the value of cos δ: for the best
fit values of sin2 θ12 = 0.308, sin2 θ13 = 0.0234 and sin2 θ23 = 0.425 used in [6], they differ
approximately by factors (1.4 – 1.9) from the values found from the exact sum rule. The same
result holds for cosφ. Moreover, the predicted values of cos δ and cosφ differ approximately
by factors of (1.5 – 2.0), in contrast to the prediction cos δ ∼= cosφ following from the leading
order sum rules. The large differences between the results for cos δ and cosφ, obtained using
the leading order and the exact sum rules, are a consequence [6] of the quantitative importance
of the next-to-leading order terms which are neglected in the leading order sum rules (7) –
(12). The next-to-leading order terms are significant for the TBM, GRA, GRB and HG forms
of Ũν because in all these cases the “dominant” terms |θ12 − θν12| ∼ sin2 θ13, or equivalently
4 | sin2 θ12 − sin2 θν12| ∼ sin2 θ13. It was shown also in [6] that in the case of the BM (LC)

form of Ũν we have |θ12−θν12| ∼ sin θ13 and the leading order sum rules provide rather precise
predictions for cos δ and cosφ.

A non-zero value of θe23 allows for a significant deviation of θ23 from π/4. Such deviation
is not excluded by the current data on sin2 θ23: at 3σ values of sin2 θ23 in the interval (0.37 –
0.64) are allowed, the best fit value being sin2 θ23 = 0.437 (0.455) [22]. The exact sum rules
for cos δ and cosφ, eqs. (5) and (6), depend on θ23, while the leading order sum rules, eqs. (7)
and (12), are independent of θ23. We are going to investigate how the dependence on θ23
affects the predictions for cos δ and cosφ, based on the exact sum rules.

4 Note that [6] since cos δ and cosφ in eqs. (7) – (12) are multiplied by sin θ13, the “dominant” terms |θ12−θν12|
and the next-to-leading order terms ∼ sin2 θ13 give contributions to cos δ and cosφ, which are both of the same
order and are ∼ sin θ13.
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Figure 1: Predictions for cos δ and cosφ in the cases of the TBM (upper left panel), GRA
(upper right panel), GRB (lower left panel) and HG (lower right panel) forms of the matrix Ũν ,
as functions of sin θ13 and for the best fit values of sin2 θ12 = 0.308 and sin2 θ23 = 0.437 [22]. The
solid lines (dashed lines) correspond to cos δ (cosφ) determined from the exact sum rule given in
eq. (5) (eq. (6)). The dash-dotted line in each of the 4 panels represents (cos δ)LO = (cosφ)LO
obtained from the leading order sum rule in eq. (8) (eq. (11)). The vertical dash-dotted line
corresponds to the best fit value of sin2 θ13 = 0.0234 [22]; the three coloured vertical bands
indicate the 1σ, 2σ and 3σ experimentally allowed ranges of sin θ13 (see text for further details).

We note first that from the exact sum rules in eqs. (5) and (6) we get to leading order in
sin θ13:

sin2 θ12 = sin2 θν12 +
sin 2θ12
tan θ23

sin θ13 cos δ +O(sin2 θ13) , (13)

sin2 θ12 = sin2 θν12 +
sin 2θν12
tan θ23

sin θ13 cosφ+O(sin2 θ13) . (14)

It follows that in the case of | sin θe23| � 1 considered in ref. [7], we have [6] tan−1 θ23 ∼=
2 cos2 θ23 = 1 + O(sin θe23). Applying the approximation employed in ref. [7], in which terms
of the order of, or smaller than, sin2 θ13, sin2 θe23 and sin θ13 sin θe23, in the sum rules of interest
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(sin2 θ12, sin
2 θ23) = (0.308, 0.437) TBM GRA GRB HG

(cos δ)E −0.0906 0.275 −0.169 0.445
(cos δ)LO −0.179 0.225 −0.265 0.415

(cos δ)E/(cos δ)LO 0.506 1.22 0.636 1.07
(cosφ)E −0.221 0.123 −0.290 0.297

(cos δ)E/(cosφ)E 0.41 2.24 0.581 1.50
(cosφ)E/(cosφ)LO 1.23 0.547 1.10 0.716

Table 1: The predicted values of cos δ and cosφ, obtained from the exact sum rules in eqs. (5)
and (6), (cos δ)E and (cosφ)E, and from the leading order sum rule in eq. (8) (eq. (11)),
(cos δ)LO = (cosφ)LO, using the best fit values of sin2 θ13 = 0.0234, sin2 θ12 = 0.308 and
sin2 θ23 = 0.437 [22], for the TBM, GRA, GRB and HG forms of the matrix Ũν . The values of
the ratios (cos δ)E/(cos δ)LO, (cos δ)E/(cosφ)E and (cosφ)E/(cosφ)LO are also shown.

are neglected, we have to set tan−1 θ23 = 1 in eqs. (13) and (14). This leads to eqs. (9) and
(10) and, correspondingly, to eqs. (7) and (12).

In Fig. 1 we show the predictions for cos δ and cosφ in the cases of the TBM, GRA,
GRB and HG forms of the matrix Ũν , derived from the exact sum rules in eqs. (5) and
(6), (cos δ)E (solid line) and (cosφ)E (dashed line), and from the leading order sum rule in
eq. (8) (eq. (11)), (cos δ)LO = (cosφ)LO (dash-dotted line). The results presented in Fig. 1 are
obtained for the best fit values of sin2 θ12 = 0.308 and sin2 θ23 = 0.437 taken from [22]. The
parameter sin2 θ13 is varied in its 3σ allowed range. In Table 1 we give the values of (cos δ)E,
(cos δ)LO, (cosφ)E and of their ratios, corresponding to the best fit values of sin2 θ12, sin2 θ23
and sin2 θ13. We see from Table 1 that for the TBM, GRA, GRB and HG forms of Ũν , cos δ
determined from the exact sum rule takes respectively the values (−0.091), 0.275, (−0.169)
and 0.445. The values of cos δ, found using the exact sum rule, eq. (5), differ in the TBM,
GRA, GRB and HG cases from those calculated using the leading order sum rule, eq. (8), by
the factors 0.506, 1.22, 0.636 and 1.07, respectively. Thus, the largest difference between the
predictions of the exact and the leading order sum rules occurs for the TBM form of Ũν .

Since the predictions of the sum rules depend on the value of θ12, we show in Fig. 2 also
results for the values of sin2 θ12, corresponding to the lower bound of the 3σ allowed range
of sin2 θ12, sin2 θ12 = 0.259, keeping sin2 θ23 fixed to its best fit value. The predictions for
(cos δ)E, (cosφ)E, (cos δ)LO = (cosφ)LO and their ratios, obtained for the best fit values of
sin2 θ13 = 0.0234 and sin2 θ23 = 0.437, and for sin2 θ12 = 0.259 are given in Table 2. In this
case the exact sum rule predictions of cos δ for the TBM, GRA, GRB and HG forms of Ũν
read (see Table 2): (cos δ)E = (−0.408), (−0.022), (−0.490) and 0.156. The dependence of
(cos δ)E, (cos δ)LO and (cosφ)E on sin2 θ12 is shown graphically in Fig. 3.

Further, for sin2 θ12 = 0.259, the ratio (cos δ)E/(cos δ)LO in the TBM, GRA, GRB and HG
cases reads, respectively, 0.744, 0.172, 0.769 and 2.32 (see Table 2). Thus, the predictions for
cos δ of the exact and the leading order sum rules differ by the factors of 5.8 and 2.3 in the
GRA and HG cases.

In what concerns the difference between the exact and leading order sum rules predictions
for cos δ, for the best fit values of sin2 θ13 and sin2 θ12, and for sin2 θ23 = 0.374, the ratio
(cos δ)E/(cos δ)LO = 0.345, 1.17, 0.494 and 0.993 for TBM, GRA, GRB and HG forms of Ũν .
For sin2 θ23 = 0.626, we have for the same ratio (cos δ)E/(cos δ)LO = 1.04, 1.52, 1.13 and 1.42.
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Thus, for sin2 θ23 = 0.374 (0.626), the leading order sum rule prediction for cos δ is rather
precise in the HG (TBM) case. For the other symmetry forms of Ũν the leading order sum
rule prediction for cos δ is largely incorrect.
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Figure 2: The same as in Fig. 1, but for sin2 θ12 = 0.259 (lower bound of the 3σ interval)
and sin2 θ23 = 0.437 (best fit value) [22].

(sin2 θ12, sin
2 θ23) = (0.259, 0.437) TBM GRA GRB HG

(cos δ)E −0.408 −0.0223 −0.490 0.156
(cos δ)LO −0.548 −0.129 −0.637 0.0673

(cos δ)E/(cos δ)LO 0.744 0.172 0.769 2.32
(cosφ)E −0.529 −0.202 −0.596 −0.0386

(cos δ)E/(cosφ)E 0.771 0.110 0.822 −4.05
(cosφ)E/(cosφ)LO 0.966 1.57 0.935 −0.573

Table 2: The same as in Table 1, but for sin2 θ13 = 0.0234 (best fit value), sin2 θ12 = 0.259
(lower bound of the 3σ range) and sin2 θ23 = 0.437 (best fit value) [22].
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Figure 3: The same as in Fig. 1, but for sin2 θ13 = 0.0234, sin2 θ23 = 0.437 (best fit values)
and varying sin2 θ12 in the 3σ range. The vertical dash-dotted line corresponds to the best fit
value of sin2 θ12 = 0.308 [22].

3. Statistical Analysis
We perform a statistical analysis of the predictions for δ, cos δ and the rephasing invariant
JCP which controls the magnitude of CPV effects in neutrino oscillations [23], in the cases of
the TBM, BM (LC), GRA, GRB and HG symmetry forms of the matrix Ũν (see eq. (3)). In
this analysis we use as input the latest results on sin2 θ12, sin2 θ13, sin2 θ23 and δ, obtained in
the global analysis of the neutrino oscillation data performed in [22]. Our goal is to derive
the allowed ranges for δ, cos δ and JCP, predicted on the basis of the current data on the
neutrino mixing parameters for each of the symmetry forms of Ũν considered. We recall that
in the standard parametrisation of the PMNS matrix, the JCP factor reads (see, e.g., [1]):

JCP = Im
{
U∗e1U

∗
µ3Ue3Uµ1

}
=

1

8
sin δ sin 2θ13 sin 2θ23 sin 2θ12 cos θ13 . (15)

We construct χ2 for the schemes considered — TBM, BM (LC), GRA, GRB and HG — as
follows:

χ2(sin2 θ12, sin
2 θ13, sin

2 θ23, δ) = χ2
1(sin

2 θ12) + χ2
2(sin

2 θ13) + χ2
3(sin

2 θ23) + χ2
4(δ) , (16)
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in which we have neglected the correlations among the oscillation parameters, since the
functions χ2

i have been extracted from the 1-dimensional projections in [22]. In order to
quantify the accuracy of our approximation we show in Fig. 4 the confidence regions at 1σ,
2σ and 3σ for 1 degree of freedom in the planes (sin2 θ23, δ), (sin2 θ13, δ) and (sin2 θ23, sin

2 θ13)
in blue (dashed lines), purple (solid lines) and light-purple (dash-dotted lines) for NO (IO)
neutrino mass spectrum, respectively, obtained using eq. (16). The parameters not shown in
the plot have been marginalised. It should be noted that what is also used in the literature is
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Figure 4: Confidence regions at 1σ, 2σ and 3σ for 1 degree of freedom in the planes (sin2 θ23, δ),
(sin2 θ13, δ) and (sin2 θ23, sin

2 θ13) in the blue (dashed lines), purple (solid lines) and light-purple
(dash-dotted lines) for NO (IO) neutrino mass spectrum, respectively, obtained using eq. (16).
The best fit points are indicated with a cross (NO) and an asterisk (IO).

the Gaussian approximation, in which χ2 can be simplified using the best fit values and the
1σ uncertainties as follows:

χ2
G =

∑
i

(xi − xi)2

σ2xi
. (17)

Here xi = {sin2 θ12, sin
2 θ13, sin

2 θ23, δ}, xi and σxi being the best fit values and the 1σ
uncertainties 5 taken from [22]. We present in Fig. 5 the results of a similar two-dimensional
analysis for the confidence level regions in the planes shown in Fig. 4, but using the
approximation for χ2 given in eq. (17). It follows from these figures that the Gaussian
approximation does not allow to reproduce the confidence regions of [22] with sufficiently good
accuracy. For this reason in our analysis we use the more accurate procedure defined through
eq. (16). In both the figures the best fit points are indicated with a cross and an asterisk for
NO and IO spectra, respectively. Each symmetry scheme considered in our analysis, which we
label with an index m, depends on a set of parameters ymj , which are related to the standard
oscillation parameters xi through expressions of the form xi = xmi (ymj ). In order to produce

the 1-dimensional figures we minimise χ2 for a fixed value of the corresponding observable α,
i.e., χ2(α) = min[χ2(xmi (ymj ))α=const] , with α = {δ, JCP}.

In the five panels in Fig. 6 we show Nσ ≡
√
χ2 as a function of δ for the five symmetry

forms of Ũν we have studied. The dashed lines correspond to the results of the global fit [22].

5 In the case of asymmetric errors we take the mean value of the two errors.
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Figure 5: The same as in Fig. 4, but using eq. (17).

The solid lines represent the results we obtain by minimising the value of χ2 in sin2 θ13 and
sin2 θ23 (or, equivalently, in sin2 θe12 and sin2 θ̂23) for a fixed value of δ 6. The blue (red)
lines correspond to NO (IO) neutrino mass spectrum. The value of χ2 at the minimum, χ2

min,

which determines the best fit value of δ predicted for each symmetry form of Ũν , allows us to
make conclusions about the compatibility of a given symmetry form of Ũν with the current
global neutrino oscillation data.

It follows from the results shown in Fig. 6 that the BM (LC) symmetry form is disfavoured
by the data at approximately 1.8σ, all the other symmetry forms considered being compatible
with the data. We note that for the TBM, GRA, GRB and HG symmetry forms, a value
of δ in the vicinity of 3π/2 is preferred statistically, in contrast, in the case of the BM (LC)
form the best fit value is very close to π [5, 6, 11]. The somewhat larger value of χ2 at the
second local minimum in the vicinity of π/2 in the TBM, GRA, GRB and HG cases, is a
consequence of the fact that the best fit value of δ obtained in the global analysis of the
current neutrino oscillation data is close to 3π/2 and that the value of δ = π/2 is statistically
disfavoured (approximately at 2.5σ). In the absence of any information on δ, the two minima
would have exactly the same value of χ2, because they correspond to the same value of cos δ.
In the schemes considered, as we have discussed, cos δ is determined by the values of θ12, θ13
and θ23. The degeneracy in the sign of sin δ can only be solved by an experimental input on
δ.

We have performed also a statistical analysis in order to derive predictions for JCP. In Fig. 7
we present Nσ ≡

√
χ2 as a function of JCP for NO and IO neutrino mass spectra. Similarly

to the case of δ, we minimise the value of χ2 for a fixed value of JCP by varying sin2 θ13 and
sin2 θ23 (or, equivalently, sin2 θe12 and sin2 θ̂23). As Fig. 7 shows, the CP-conserving value of
JCP = 0 is excluded in the cases of the TBM, GRA, GRB and HG neutrino mixing symmetry
forms, respectively, at approximately 5σ, 4σ, 4σ and 3σ confidence levels with respect to the
confidence level of the corresponding best fit values 7. These results correspond to those we
have obtained for δ, more specifically to the confidence levels at which the CP-conserving

6 We note that in the scheme considered by us, fixing the value of δ implies that one of the three neutrino
mixing angles is expressed in terms of the other two. We choose for convenience this angle to be θ12.
7 The confidence levels under discussion differ in the cases of NO and IO neutrino mass spectra, but as Fig. 7
indicates, in the cases considered these differences are rather small and we have not given them.
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Figure 6: Nσ ≡
√
χ2 as a function of δ. The dashed lines represent the results of the global

fit [22], while the solid lines represent the results we obtain for the TBM, BM (LC), GRA (upper
left, central, right panels), GRB and HG (lower left and right panels) symmetry forms of Ũν .
The blue (red) lines are for NO (IO) neutrino mass spectrum (see text for further details).

values of δ = 0, π, 2π, are excluded (see Fig. 6).
In contrast, for the BM (LC) symmetry form, the CP-conserving value of δ, namely,

δ ∼= π, is preferred and therefore the CPV effects in neutrino oscillations are predicted to be
suppressed. At the best fit point we obtain a value of JCP = −0.005 (−0.002) for NO (IO)
neutrino mass spectrum, which corresponds to the best fit value of δ/π = 1.04 (1.02). The
allowed range of the JCP factor in the BM (LC) includes the CP-conserving value JCP = 0
at practically any confidence level. The tables which summarise the best fit values and the
corresponding 3σ ranges for δ, cos δ, JCP and sin2 θ23 can be found in [11].
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Figure 7: Nσ ≡
√
χ2 as a function of JCP. The dashed lines represent the results of the

global fit [22], while the solid lines represent the results we obtain for the TBM, BM (LC), GRA
(upper left, central, right panels), GRB and HG (lower left and right panels) neutrino mixing
symmetry forms. The blue (red) lines are for NO (IO) neutrino mass spectrum (see text for
further details).

Summary and Conclusions

Using the fact that the neutrino mixing matrix U = U †eUν , where Ue and Uν result from
the diagonalisation of the charged lepton and neutrino mass matrices, we have analysed the
sum rules which the Dirac phase δ present in U satisfies when Uν has a form dictated by,
or associated with, discrete symmetries and Ue has a “minimal” form (in terms of angles
and phases it contains) that can provide the requisite corrections to Uν , so that the reactor,
atmospheric and solar neutrino mixing angles θ13, θ23 and θ12 have values compatible with
the current data.
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In the scheme considered by us the four observables θ12, θ23, θ13 and the Dirac phase δ
in the PMNS matrix are functions of three parameters θe12, θ̂23 and φ. As a consequence,
the Dirac phase δ can be expressed as a function of the three PMNS angles θ12, θ23 and θ13,
leading to a new “sum rule” relating δ and θ12, θ23 and θ13. This sum rule is exact within the
scheme considered. Its explicit form depends on the symmetry form of the matrix Ũν , i.e., on
the value of the angle θν12. For arbitrary fixed value of θν12 the sum rule of interest is given in
eq. (5) [6]. A similar exact sum rule can be derived for the phase φ (eq. (6)) [6].

We show, in particular, that the exact sum rule predictions for cos δ vary significantly with
the symmetry form of Ũν . This result implies that the measurement of cos δ can allow us
to distinguish between the different symmetry forms of Ũν [6] provided sin2 θ12, sin2 θ13 and
sin2 θ23 are known with a sufficiently good precision. Even determining the sign of cos δ will
be sufficient to eliminate some of the possible symmetry forms of Ũν .

We find also that the exact sum rule predictions for cos δ exhibit strong dependence on
the value of sin2 θ12 when the latter is varied in its 3σ experimentally allowed range (0.259 –
0.359). The predictions for cos δ change significantly not only in magnitude, but in the cases
of TBM, GRA and GRB forms of Ũν also the sign of cos δ can change.

In all cases considered, having the exact sum rule results for cos δ, we could investigate
the precision of the leading order sum rule predictions for cos δ. We found that the leading
order sum rule predictions for cos δ are, in general, imprecise and in many cases are largely
incorrect, the only exception being the case of the BM (LC) form of Ũν [6].

Finally, we have performed a statistical analysis of the predictions for δ, cos δ and the
rephasing invariant JCP which controls the magnitude of CPV effects in neutrino oscillations
[23], in the cases of the TBM, BM (LC), GRA, GRB and HG symmetry forms of the matrix
Ũν considered. In this analysis we have used as input the latest results on sin2 θ12, sin2 θ13,
sin2 θ23 and δ, obtained in the global analysis of the neutrino oscillation data performed
in [22]. Our goal was to derive the allowed ranges for δ, cos δ and JCP, predicted on the basis
of the current data on the neutrino mixing parameters for each of the symmetry forms of
Ũν considered. The results of this analysis are shown in Figs. 6 and 7. We have shown, in
particular, that the CP-conserving value of JCP = 0 is excluded in the cases of the TBM,
GRA, GRB and HG neutrino mixing symmetry forms, respectively, at approximately 5σ, 4σ,
4σ and 3σ confidence level with respect to the confidence level of the corresponding best fit
values (Fig. 7). These results reflect the predictions we have obtained for δ, more specifically,
the confidence levels at which the CP-conserving values of δ = 0, π, 2π, are excluded in the
discussed cases (see Fig. 6). We have found also that the 3σ allowed intervals of values of δ
and JCP are rather narrow for all the symmetry forms considered, except for the BM (LC)
form. More specifically, for the TBM, GRA, GRB and HG symmetry forms we have obtained
at 3σ: 0.020 ≤ |JCP| ≤ 0.039. For the best fit values of JCP we have found, respectively:
JCP = (−0.034), (−0.033), (−0.034), and (−0.031). Our results indicate that distinguishing
between the TBM, GRA, GRB and HG symmetry forms of the neutrino mixing would require
extremely high precision measurement of the JCP factor.

The predictions for δ, cos δ and JCP in the case of the BM (LC) symmetry form of Ũν , as the
results of the statistical analysis performed by us showed, differ significantly from those found
for the TBM, GRA, GRB and HG forms: the best fit value of δ ∼= π, and, correspondingly,
of JCP

∼= 0. For the 3σ range of JCP we have obtained in the case of NO (IO) neutrino mass
spectrum: −0.026 (−0.025) ≤ JCP ≤ 0.021 (0.023), i.e., it includes a sub-interval of values
centred on zero, which does not overlap with the 3σ allowed intervals of values of JCP in the
TBM, GRA, GRB and HG cases.
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The results obtained in the present study, in particular, show that the experimental
measurement of the cosine of the Dirac phase δ of the PMNS neutrino mixing matrix can
provide unique information about the possible discrete symmetry origin of the observed
pattern of neutrino mixing.
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