52 research outputs found

    Effect of chicken bone extracts on metabolic and mitochondrial functions of K562 cell line

    Get PDF
    Background: Tetracyclines’ use in intensive animal farming has raised some concerns regarding the biosafety for humans. Increasing evidences have revealed the presence of these drugs in processed animal by-products, such as bone, throughout the food chain. A potential off-target of tetracyclines is the bacterial-like mitochondrial translational machinery, thereby causing proteostatic alterations in mitochondrial DNA-encoded components of the oxidative phosphorylation system. Methods: The Seahorse methodology, confocal microscopy imaging of mitochondrial potential and reactive oxygen species, and q-RT-PCR analysis of the expression of genes involved in mitochondrial biogenesis and mitophagy were carried out on human lymphoblast derived K562 cell line challenged with bone powder derived from chicken treated with or without oxytetracycline and pure oxytetracycline. Results: A complex dose-dependent profile was attained with a low dosage of bone powder extracts causing a metabolic adaptation hallmarked by stimulation of the mitochondrial respiration and enhanced expression of mitochondriogenic factors in particular in cells challenged with oxytetracycline-free bone extract. Conversely, a higher dosage of bone powder extracts, regardless of their source, caused a progressive inhibition of mitochondrial respiration and glycolysis, ultimately leading to cell death. No significant effects of the pure oxytetracycline were observed. Conclusion: Bone powder, regardless of chicken treatment, contains and releases factors/chemicals responsible for the observed effects on energy metabolism. Quantitative differential effects appear to depend on biochemical alterations in the bone matrix caused by antibiotics rather than antibiotics themselves

    Adverse food reactions in dogs due to antibiotic residues in pet food: a preliminary study

    Get PDF
    In the last decades, adverse food reactions have increased considerably in dogs and cats. In this study we report on the possible onset of food intolerances symptoms, including otitis, diarrhoea, generalised anxiety, and dermatitis in a cohort of 8 dogs consuming commercial diets. All dogs received an organic chicken-based diet for 15 days. We performed analysis of blood biochemical parameters, kibble composition, and oxytetracycline (OTC) serum concentration before and after 15 days of organic chicken-based diet supplementation. We hypothesised that a chronic intake of contaminated food enhanced by the presence of nanoparticle aggregates might be at the base of the onset of pharmacologic or idiopathic food intolerances. At the end of the evaluation period, an overall significant reduction of otitis, diarrhoea, generalised anxiety, and dermatitis was observed. Biochemical analyses indicate a significant increase in the alkaline phosphatase, from 41 to 52.5 U/L, after 15 days (\u2022\u2022p <0.01), while a significant decrease in Gamma-glutamyl transferase and urea, from 9.37 to 6.25 U/L and from 32.13 \ub1 8.72 to 22.13 \ub1 7.8 mg/dL, respectively, was observed (\u2022p <0.05). A significant decrease, from 0.22 to 0.02 \u3bcg/mL, in mean OTC serum concentration was also observed (\u2022\u2022p <0.01). Composition analysis revealed the presence of OTC, calcium, aluminium, silicon, and phosphorous nanoparticle aggregates. Further research on a wider sample size would help to confirm the hypothesis proposed here

    Superoxide dismutase-1 intracellular content in T lymphocytes associates with increased regulatory T cell level in multiple sclerosis subjects undergoing immune-modulating treatment

    Get PDF
    Reactive oxygen species (ROS) participate in the T-cell activation processes. ROS-dependent regulatory networks are usually mediated by peroxides, which are more stable and able to freely migrate inside cells. Superoxide dismutase (SOD)-1 represents the major physiological intracellular source of peroxides. We found that antigen-dependent activation represents a triggering element for SOD-1 production and secretion by human T lymphocytes. A deranged T-cell proinflammatory response characterizes the pathogenesis of multiple sclerosis (MS). We previously observed a decreased SOD-1 intracellular content in leukocytes of MS individuals at diagnosis, with increasing amounts of such enzyme after interferon (IFN)-b 1b treatment. Here, we analyzed in depth SOD-1 intracellular content in T cells in a cohort of MS individuals undergoing immune-modulating treatment. Higher amounts of the enzyme were associated with increased availability of regulatory T cells (Treg) prefer-entially expressing Foxp3-exon 2 (Foxp3-E2), as described for effective Treg. In vitro administration of recombinant human SOD-1 to activated T cells, significantly increased their IL-17 production, while SOD-1 molecules lacking dismutase activity were unable to interfere with cytokine production by activated T cells in vitro. Furthermore, hydrogen peroxide addition was observed to mimic, in vitro, the SOD-1 effect on IL-17 production. These data add SOD-1 to the molecules involved in the molecular pathways contributing to re-shaping the T-cell cytokine profile and Treg differentiation

    Adaptive and Innate Cytotoxic Effectors in Chronic Lymphocytic Leukaemia (CLL) Subjects with Stable Disease

    Get PDF
    Chronic lymphocytic leukaemia (CLL) is characterised by the expansion of a neoplastic mature B cell clone. CLL clinical outcome is very heterogeneous, with some subjects never requiring therapy and some showing an aggressive disease. Genetic and epigenetic alterations and pro-inflammatory microenvironment influence CLL progression and prognosis. The involvement of immune-mediated mechanisms in CLL control needs to be investigated. We analyse the activation profile of innate and adaptive cytotoxic immune effectors in a cohort of 26 CLL patients with stable disease, as key elements for immune-mediated control of cancer progression. We observed an increase in CD54 expression and interferon (IFN)-γ production by cytotoxic T cells (CTL). CTL ability to recognise tumour-targets depends on human leukocyte antigens (HLA)-class I expression. We observed a decreased expression of HLA-A and HLA-BC on B cells of CLL subjects, associated with a significant reduction in intracellular calnexin that is relevant for HLA surface expression. Natural killer (NK) cells and CTL from CLL subjects show an increased expression of the activating receptor KIR2DS2 and a reduction of 3DL1 and NKG2A inhibiting molecules. Therefore, an activation profile characterises CTL and NK cells of CLL subjects with stable disease. This profile is conceivable with the functional involvement of cytotoxic effectors in CLL control

    Pro-Inflammatory and Immunological Profile of Dogs with Myxomatous Mitral Valve Disease

    Get PDF
    Myxomatous mitral valve disease (MMVD) is a very frequently acquired cardiac disease in dog breeds and is responsible for congestive heart failure (CHF). The involvement of the immune system and pro-inflammatory cytokines in dogs with CHF due to mitral valve disease has not yet been extensively investigated. Here, we investigate the role of pro-inflammatory cytokines and the dysfunction of the immune system in dogs with different stages of severity through the blood assessment of CD4+FoxP3+regulatory T cells (Treg) cells, leptin, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 pro-inflammatory cytokines, and immunological and echocardiographic parameters. A total of 36 cardiopathic dogs, 14 females and 22 males, with MMVD were included. Mean age and body weight (BW) at the time of enrollment were 10.7 ± 2.77 years and 10.9 ± 6.69 kg, respectively. For the comparison of the pro-inflammatory and immunological parameters, two groups of healthy dogs were also established. Control group 1 consisted of young animals (n. 11; 6 females and 5 males), whose age and mean weight were 4.1 ± 0.82 years and 13.8 ± 4.30 kg, respectively. Control group 2 consisted of elderly dogs (n. 12; 6 females and 6 males), whose age and BW were 9.6 ± 0.98 years and 14.8 ± 6.15 kg, respectively. Of particular interest, an increase in Treg cells was observed in the cohort of MMVD dogs, as compared to the healthy dogs, as Treg cells are involved in the maintenance of peripheral tolerance, and they are involved in etiopathogenetic and pathophysiological mechanisms in the dog. On the other hand, TNF-α, IL-1β, and IL-6 significantly increased according to the severity of the disease in MMVD dogs. Furthermore, the positive correlation between IL-6 and the left ventricle diastolic volume suggests that inflammatory activation may be involved in cardiac remodeling associated with the progressive volumetric overload in MMVD

    Superoxide Dismutase-1 intracellular content in T lymphocytes associates with increased Regulatory T Cell level in Multiple Sclerosis subjects undergoing immune-modulating treatment.

    Get PDF
    Reactive oxygen species (ROS) participate in the T-cell activation processes. ROS-dependent regulatory networks are usually mediated by peroxides, which are more stable and able to freely migrate inside cells. Superoxide dismutase (SOD)-1 represents the major physiological intracellular source of peroxides. We found that antigen-dependent activation represents a triggering element for SOD-1 production and secretion by human T lymphocytes. A deranged T-cell proinflammatory response characterizes the pathogenesis of multiple sclerosis (MS). We previously observed a decreased SOD-1 intracellular content in leukocytes of MS individuals at diagnosis, with increasing amounts of such enzyme after interferon (IFN)-b 1b treatment. Here, we analyzed in depth SOD-1 intracellular content in T cells in a cohort of MS individuals undergoing immune-modulating treatment. Higher amounts of the enzyme were associated with increased availability of regulatory T cells (Treg) preferentially expressing Foxp3-exon 2 (Foxp3-E2), as described for effective Treg. In vitro administration of recombinant human SOD-1 to activated T cells, significantly increased their IL-17 production, while SOD-1 molecules lacking dismutase activity were unable to interfere with cytokine production by activated T cells in vitro. Furthermore, hydrogen peroxide addition was observed to mimic, in vitro, the SOD-1 effect on IL-17 production. These data add SOD-1 to the molecules involved in the molecular pathways contributing to re-shaping the T-cell cytokine profile and Treg differentiation

    Pro-Inflammatory and Immunological Profile of Dogs with Myxomatous Mitral Valve Disease

    Get PDF
    Simple Summary Myxomatous mitral valve disease (MMVD) is the most commonly acquired cardiac disease in dogs and is responsible for congestive heart failure. In this research, some inflammatory, immunological, and echocardiographic parameters were evaluated in dogs affected by MMVD in order to assess the involvement of additional pathophysiological mechanisms during the disease. The main results revealed that inflammation parameters increased according to the severity of the disease and suggested that inflammatory activation may play an important role in cardiac remodeling associated with the progressive volumetric overload in MMVD. Also, a relative increase in Treg cells was detected, suggesting that they could represent a regulatory mechanism for limiting the inflammatory immune response. Myxomatous mitral valve disease (MMVD) is a very frequently acquired cardiac disease in dog breeds and is responsible for congestive heart failure (CHF). The involvement of the immune system and pro-inflammatory cytokines in dogs with CHF due to mitral valve disease has not yet been extensively investigated. Here, we investigate the role of pro-inflammatory cytokines and the dysfunction of the immune system in dogs with different stages of severity through the blood assessment of CD4(+)FoxP3(+)regulatory T cells (Treg) cells, leptin, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1 beta and IL-6 pro-inflammatory cytokines, and immunological and echocardiographic parameters. A total of 36 cardiopathic dogs, 14 females and 22 males, with MMVD were included. Mean age and body weight (BW) at the time of enrollment were 10.7 +/- 2.77 years and 10.9 +/- 6.69 kg, respectively. For the comparison of the pro-inflammatory and immunological parameters, two groups of healthy dogs were also established. Control group 1 consisted of young animals (n. 11; 6 females and 5 males), whose age and mean weight were 4.1 +/- 0.82 years and 13.8 +/- 4.30 kg, respectively. Control group 2 consisted of elderly dogs (n. 12; 6 females and 6 males), whose age and BW were 9.6 +/- 0.98 years and 14.8 +/- 6.15 kg, respectively. Of particular interest, an increase in Treg cells was observed in the cohort of MMVD dogs, as compared to the healthy dogs, as Treg cells are involved in the maintenance of peripheral tolerance, and they are involved in etiopathogenetic and pathophysiological mechanisms in the dog. On the other hand, TNF-alpha, IL-1 beta, and IL-6 significantly increased according to the severity of the disease in MMVD dogs. Furthermore, the positive correlation between IL-6 and the left ventricle diastolic volume suggests that inflammatory activation may be involved in cardiac remodeling associated with the progressive volumetric overload in MMVD

    Oxytetracycline induces DNA damage and epigenetic changes: A possible risk for human and animal health?

    Get PDF
    Background. Oxytetracycline (OTC), which is largely employed in zootechnical and veterinary practices to ensure wellness of farmed animals, is partially absorbed within the gastrointestinal tract depositing in several tissues. Therefore, the potential OTC toxicity is relevant when considering the putative risk derived by the entry and accumulation of such drug in human and pet food chain supply. Despite scientific literature highlights several OTC-dependent toxic effects on human and animal health, the molecular mechanisms of such toxicity are still poorly understood. Methods. Here, we evaluated DNA damages and epigenetic alterations by quantitative reverse transcription polymerase chain reaction, quantitative polymerase chain reac- tion, chromatin immuno-precipitation and Western blot analysis. Results. We observed that human peripheral blood mononuclear cells (PBMCs) expressedDNAdamage features (activation ofATMand p53, phosphorylation ofH2AX and modifications of histone H3 methylation of lysine K4 in the chromatin) after the in vitro exposure to OTC. These changes are linked to a robust inflammatory response indicated by an increased expression of Interferon (IFN)- and type 1 superoxide dismutase (SOD1). Discussion. Our data reveal an unexpected biological in vitro activity of OTC able to modify DNA and chromatin in cultured human PBMC. In this regard, OTC presence in foods of animal origin could represent a potential risk for both the human and animal health

    Functional foods in pet nutrition: Focus on dogs and cats

    Get PDF
    Functional foods provide health benefits if they are consumed on a regular basis as part of a varied diet. In this review, we discuss the availability and role of functional foods in pet nutrition with a focus on dogs and cats. Indeed, functional foods modify gastrointestinal physiology, promote changes in biochemical parameters, improve brain functions and may reduce or minimize the risk of developing specific pathologies. This evidence derives largely from clinical studies while only limited evidence is available from studies in dogs and cats. Therefore, functional food consumption should be further investigated in pet nutrition to understand how dietary interventions can be used for disease prevention and treatment
    • …
    corecore