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Abstract: Background: Tetracyclines’ use in intensive animal farming has raised some concerns
regarding the biosafety for humans. Increasing evidences have revealed the presence of these
drugs in processed animal by-products, such as bone, throughout the food chain. A potential
off-target of tetracyclines is the bacterial-like mitochondrial translational machinery, thereby causing
proteostatic alterations in mitochondrial DNA-encoded components of the oxidative phosphorylation
system. Methods: The Seahorse methodology, confocal microscopy imaging of mitochondrial
potential and reactive oxygen species, and q-RT-PCR analysis of the expression of genes involved
in mitochondrial biogenesis and mitophagy were carried out on human lymphoblast derived K562
cell line challenged with bone powder derived from chicken treated with or without oxytetracycline
and pure oxytetracycline. Results: A complex dose-dependent profile was attained with a low
dosage of bone powder extracts causing a metabolic adaptation hallmarked by stimulation of the
mitochondrial respiration and enhanced expression of mitochondriogenic factors in particular in
cells challenged with oxytetracycline-free bone extract. Conversely, a higher dosage of bone powder
extracts, regardless of their source, caused a progressive inhibition of mitochondrial respiration
and glycolysis, ultimately leading to cell death. No significant effects of the pure oxytetracycline
were observed. Conclusion: Bone powder, regardless of chicken treatment, contains and releases
factors/chemicals responsible for the observed effects on energy metabolism. Quantitative differential
effects appear to depend on biochemical alterations in the bone matrix caused by antibiotics rather
than antibiotics themselves.
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1. Introduction

Tetracyclines are widely employed antibiotics in zootechny because of their broad spectrum of
action in prophylaxis to prevent the spread of bacterial pathogen infection in farm animals [1–3].
Mechanistically, tetracyclines inhibit protein translation in bacteria by binding to the 30S and 50S subunit
of the microbial ribosome [4]. However, tetracyclines also bind eukaryotic ribosomes accounting for
the small off-site effect in mammalian cells [5]. Of note, given the similarity of bacterial ribosomes
with the mitochondrial ribosome (mitoribosome), tetracyclines more specifically affect mitochondrial
translation in eukaryotic cells [6].
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Mitochondria have a “bacterial” ancestry and are endowed with autonomous translational
machinery, distinct from that of the nucleus/cytosol, enabling biosynthesis of proteins exclusively
coded by the mitochondrial DNA (mtDNA) [7]. All the mtDNA-coded proteins are subunits that along
with others coded by the nuclear DNA co-assemble to form the respiratory chain complexes I, III, IV,
and the ATP-synthase. All these complexes, together with complex II, constitute the terminal arm of the
aerobic catabolism, coupling the transfer of reducing equivalents from NADH and FADH2 to O2 to the
synthesis of ATP by a chemiosmotic mechanism [8]. As the mitochondrial oxidative phosphorylation
(OxPhos) is the more efficient system to generate ATP in the cell, it is not surprising that tetracycline
antibiotics influence the cell bioenergetics by affecting the mitochondrial proteostasis. This constitutes
a major concern when farm animals subjected to antibiotic administration are intended for the food
market. For this reason, the admitted dosage of antibiotic administration and allowed maximal
residual limits are regulated by stringent guidelines [9,10]. However, tetracyclines, in particular
oxytetracycline (OTC), which can accumulate in the bone tissue of farmed animals, are not included in
the target samples imposed by the European Community [9] though they can be present in mechanically
separated meat (e.g., sausages, Vienna sausages) [11] as well as in dry pet food [12–14].

In fact, according to the European Food Safety Authority’s opinion, calcium content is considered
the only appropriate chemical parameter to discriminate between mechanically and nonmechanically
separated meat products [11,15]. Thus, long-lasting consumption of such food might be related to some
reported cases of adverse food reactions observed in humans [16,17] and pets [12,13,18]. Moreover,
several in vitro reports evidenced the toxicity [14,19–21], proinflammatory [19,22], and genotoxic [23]
activity of bone powder derived from chicken treated with OTC according to withdrawal times but
also of OTC in its liquid form as per generally used in zootechny.

On this basis, this study aimed to verify the effect of extracts from bone powder derived
from chicken treated with or without OTC according to withdrawal times [20] on the viability and
metabolic profile of the cultured human lymphoblast derived K562 cell line with a specific focus on the
mitochondrial functions.

2. Results

2.1. Effect of Chicken Bone Powder Extracts and Oxytetracycline on K562 Cell Viability

Samples of chicken bone powder were obtained from broiler chicken raised either under
natural/biological and tetracycline-treated conditions. The OTC content in chicken bone extracts was
evaluated by LC-MS/MS spectrometry, and the results were below the instrumental limit of detection
(i.e., < 0.5 µg/kg) in untreated chicken and 1286.3 ± 256.6 µg/kg) in drug-treated chicken [20].

The K562 cell line has attained widespread use as a highly sensitive in vitro target for testing
cytotoxicity of a variety of compounds [24,25]. Figure 1A shows the effect on cell viability of 24 h
treatment of K562 cells with graded dilutions of RPMI extracts from bone powder derived from poultry
raised on the ground in a full natural context, from here ahead defined as BPBE (biologically raised
poultry bone extract). It can be seen that cell viability was unaffected at relative low dilutions of
BPBE corresponding to 2 and 6 mg/mL of bone powder but started to decrease progressively with
BPBE from 50 to 124 mg/mL of bone powder with 50% reduction of viability at the lowest dilution
tested. A similar test was performed on K562 cells, but following incubation with extracts from bone
powder derived from poultry raised in farm, from here ahead defined as FPBE (intensive-farming
raised poultry bone extract). The results are illustrated in Figure 1B and show that similar to BPBE,
FBPE caused a dose-dependent decrease of cell viability through starting at a dilution corresponding to
6 mg/mL of the bone powder. For comparative purposes, K562 cells were incubated with pure OTC in
the concentration range of 1–100 µM and Figure 1B shows that OTC affected cell viability significantly
at 50 and 100 µM.
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Figure 1. Effect of bone powder extracts on K562 cell viability. Cells were incubated for 24 h with the 
indicated concentrations of either biologically raised poultry bone extract (BPBE) and intensive-
farming raised poultry bone extract (FPBE) (A) or oxytetracycline (OTC) (B) and directly counted by 
the Trypan Blue exclusion test. Bars are means ± SEM of four independent biological replicates for 
each condition and are percentages of vehicle-treated cells; *p < 0.05 vs. 0 g/ml of bone extracts or 0 
mM OTC. 

2.2. Effect of Chicken Bone Powder Extracts and Oxytetracycline on Mitochondrial Respiration and 
Glycolysis in K562 Cell 

To correlate the observed effect of BPBE, FBPE, and OTC on cell viability to alterations of the 
cellular metabolism, we performed a systematic analysis using the Seahorse technology to assess the 
two major cellular metabolic fluxes [26]. These are the mitochondrial respiratory activities driving 
the oxidative phosphorylation (OxPhos) and measured as oxygen consumption rate (OCR), and 
glycolysis, measured as extracellular acidification rate (ECAR), largely due to conversion of pyruvate 
to lactate. Figure 2A,B shows the workflow and outcomes of this test. 

 
Figure 2. Representative outcome of the metabolic flux analysis protocol. (A) Oxygen consumption 
rate (OCR) was first measured under routine condition (baseline respiration), and then its changes 
following the sequential additions of oligomycin, carbonyl cyanide p-
trifluoromethoxyphenylhydrazone (FCCP), rotenone + antimycin A; the bioenergetic parameters 
inferred from the comparison of the different OCR attained are shown. (B) Extracellular acidification 
rate (ECAR) was first measured in a buffer without glucose, and then its changes following the 

Figure 1. Effect of bone powder extracts on K562 cell viability. Cells were incubated for 24 h with the
indicated concentrations of either biologically raised poultry bone extract (BPBE) and intensive-farming
raised poultry bone extract (FPBE) (A) or oxytetracycline (OTC) (B) and directly counted by the Trypan
Blue exclusion test. Bars are means ± SEM of four independent biological replicates for each condition
and are percentages of vehicle-treated cells; * p < 0.05 vs. 0 g/mL of bone extracts or 0 mM OTC.

2.2. Effect of Chicken Bone Powder Extracts and Oxytetracycline on Mitochondrial Respiration and Glycolysis
in K562 Cell

To correlate the observed effect of BPBE, FBPE, and OTC on cell viability to alterations of the
cellular metabolism, we performed a systematic analysis using the Seahorse technology to assess the
two major cellular metabolic fluxes [26]. These are the mitochondrial respiratory activities driving the
oxidative phosphorylation (OxPhos) and measured as oxygen consumption rate (OCR), and glycolysis,
measured as extracellular acidification rate (ECAR), largely due to conversion of pyruvate to lactate.
Figure 2A,B shows the workflow and outcomes of this test.
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Figure 2. Representative outcome of the metabolic flux analysis protocol. (A) Oxygen consumption rate
(OCR) was first measured under routine condition (baseline respiration), and then its changes following
the sequential additions of oligomycin, carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP),
rotenone + antimycin A; the bioenergetic parameters inferred from the comparison of the different
OCR attained are shown. (B) Extracellular acidification rate (ECAR) was first measured in a buffer
without glucose, and then its changes following the sequential addition of glucose, oligomycin, and
2-deoxyglucose (2-DG); the glycolytic parameters inferred from the comparison of the different ECAR
attained are shown.
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For the mitochondrial respiratory activity after measuring the basal OCR (OCRbas), the inhibitor of
the ATP synthase oligomycin was added to elicit a lower membrane potential-controlled OCR (OCRolig);
after that, the protonophore uncoupler Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone
(FCCP) was added to release the maximal respiratory capacity (OCRunc) and finally a combination
of the two respiratory chain inhibitors antimycin A + rotenone to set a reference baseline and to
assess nonmitochondrial OCR. For measurement of glycolysis, cells in glucose-free medium were
supplemented with glucose and basal ECAR assessed (ECARbas); after that, oligomycin was added
to elicit the maximal glycolytic capacity (ECARmax) and finally the glycolysis inhibitor 2-DG to set a
reference baseline and to assess nonglycolytic ECAR.

Using the above-described protocol, the effect of BPBE on the metabolic fluxes of K562 was tested.
As shown in Figure 3A, BPBE treatment resulted in a biphasic effect on the mitochondrial respiratory
activity; at the highest dilution of the BPBE corresponding to 2 mg/mL of bone powder, the OCRbas

almost doubled as compared with untreated cells but started to decline progressively at lower dilution
of BPBE to an extent that at the lowest dilution tested the OCRbas was barely detectable. In keeping
with the notion that the difference between the OCRbas and the OCRolig is an indirect measure of
the mitochondrial respiration linked to ATP production (OCRATP), it is worth noting that it followed
the same profile of the OCRbas, thereby providing a measure of the OxPhos efficiency. Unlike OCR,
glycolysis appeared to be less sensitive to BPBE. Indeed, ECARs, though inhibited at the lower dilution
of BPBE, still retained a 40%–50% of residual activity as compared with untreated cells (Figure 3B).

The effect of FPBE on the metabolic fluxes of K652 recapitulated what was observed with BPBE
with some differences. In particular, the stimulation of the mitochondrial respiration at the highest
dilution of FPBE was smaller than that attained with BPBE, and the inhibition of ECARbas was stronger
at the lowest dilutions of FPBE (Figure 3C,D). Pure OTC treatments did not result in any significantly
large changes in the respiratory activity, with the exception of an increase at 10 µM, and in a progressive
decline of the glycolytic activity which, however, retained about 50% of residual ECARs at the highest
concentration of OTC tested (Figure 3E,F).

2.3. Effect of Chicken Bone Powder Extracts and Oxytetracycline on the Mitochondrial Membrane Potential and
on Peroxide Production in K562 Cell

To provide independent evidences of the effect of the compound treatments on the mitochondrial
activity, we utilized laser scanning confocal microscopy to image the respiration-driven mitochondrial
membrane potential (∆Ψm) in live cells using the mitotropic fluorescent probe tetramethylrhodamine,
ethyl ester (TMRE) [27]. For this analysis, we selected only three conditions corresponding to
low, intermediate, and high concentrations of the compound’s treatment. The results illustrated in
Figure 4B,C show that at the lowest dilution tested, both BPBE and FPBE treatment caused an increasing
reduction in ∆Ψm consistent with the inhibition of the mitochondrial respiratory activity. No significant
changes in the intensity of the ∆Ψm-related fluorescent signal was detectable at low and intermediate
concentrations. On the contrary, pure OTC treatment of K562 cells did not result in appreciable changes
of the TMRE fluorescence at all the concentrations tested, Figure 4A. Enlargements of the images
allow the appreciation of the intracellular distribution of the fluorescent signal (Figure 4D); in the
untreated control cells, the signal was localized in an interconnected extranuclear compartment clearly
resembling the mitochondrial network and a comparable distribution was observed in cells treated
with 100 µM OTC.

Conversely, in cells treated with intermediate dilutions of both BPBE and FBPE, the TMRE-related
fluorescent signal appeared diffused and/or concentrated in aggregate indicative of an unstructured
mitochondrial compartment, thereby anticipating the metabolic sufferance observed following
treatment of the cells at the lowest dilutions of the bone extracts.

The mitochondrial respiratory chain is the major source of reactive oxygen species (ROS) in the
cell which are generated by electron leak directly to oxygen with the production of the superoxide
radical anion O2

•- further converted to H2O2, by the mitochondrial superoxide dismutase, and in this
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form diffuses outside the organelle [28,29]. On this basis, we monitored the production of cellular
ROS as an indirect measure of the respiratory activity by the peroxide sensitive fluorescent probe
dichlorofluorescein (DCF) [30]. As shown in Figure 5, both BPBE and FPBE treatment caused a
significant reduction in the DCF-related signal at the intermediate and lowest dilutions. Conversely,
no changes were observed at all the concentrations of pure OTC tested.Pharmaceuticals 2020, 13, x FOR PEER REVIEW 5 of 15 
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Figure 3. Effect of chicken bone powder treatment on the metabolic fluxes in K562 cells. Cells were
incubated for 48 h with the indicated concentrations of either BPBE (A,B) and FPBE (C,D), or OTC (E,F)
and then subjected to metabolic flux analysis as detailed under Materials and Methods. The different
OCRs and ECARs parameters are detailed in Figure 2. Bars are means ± SEM of 3–4 independent
experiments with three technical replicates each; * p < 0.05 with respect to the same parameter in
untreated cells (“0” concentration of the compound).
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confocal microscopy analysis as detailed under Materials and Methods; untreated cells were used as 
control (CTRL). The images shown are from a single experiment and are representative of three 
independent experiments yielding similar results; (D) digital magnification of selected areas shown 
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Figure 4. Effect of chicken bone powder treatment on the mitochondrial membrane potential in K562
cells. Cells were treated for 48 h with the indicated concentrations of either of OTC (A), BPBE (B),
FPBE (C), and then incubated with tetramethylrhodamine, ethyl ester (TMRE) and subjected to confocal
microscopy analysis as detailed under Materials and Methods; untreated cells were used as control
(CTRL). The images shown are from a single experiment and are representative of three independent
experiments yielding similar results; (D) digital magnification of selected areas shown as white frames.
(E) Quantification of the fluorescence-related pixel intensity/cell; for each condition and for each
experiment 10–15 different optical fields were randomly chosen, and the fluorescence intensity/cell
averaged ± SEM; * p < 0.05, ** p < 0.01 with respect CTRL cells.
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Figure 5. Effect of chicken bone powder treatment on the reactive oxygen species production in
K562 cells. Cells were treated for 48 h with the indicated concentrations of either of OTC (A), BPBE
(B), FPBE (C), and then incubated with 2’,7’-dichlorodihydrofluorescein diacetate (H2-DCFDA) and
subjected to confocal microscopy analysis as detailed under Materials and Methods; untreated cells
were used as control (CTRL). The images shown are from a single experiment and are representative
of three independent experiments yielding similar results; (D) digital magnification of selected areas
shown as white frames. (E) Quantification of the fluorescence-related pixel intensity/cell; for each
condition and for each experiment, 10–15 different optical fields were randomly chosen, and the
fluorescence intensity/cell averaged ± SEM; ** p < 0.01 with respect CTRL cells.
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2.4. Effect of Chicken Bone Powder Extracts and Oxytetracycline on the Expression Level of Factors Involved in
the Mitochondrial Turn-Over

Mitochondria are dynamic organelles undergoing continuous cycling as a consequence of the
balance between their biogenesis and mitophagic removal, thereby adapting their relative content to
the actual cellular energy demand [31]. To investigate this aspect of the mitochondrial physiology,
we analyzed the expression level of selected genes coding for markers of mitochondria and for
transcription factors known to be involved either in mitochondrial biogenesis and mitophagy by
quantitative RT-PCR. We could not extend this analysis to K562 cells treated with the lowest dilutions of
both BPBE and FPBE because the limited amount of total cellular RNA extract hampered the acquisition
of reproducible results. Of note, however, at the lowest and intermediate dosage of the extracts tested,
the amount of recovered RNA was about 50% lower than that attained by untreated cells (data not
shown).

Figure 6A shows the normalized transcript levels of the genes coding for the peroxisome
proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), a master regulator of the
mitochondrial biogenesis and for the mitochondrial transcription factor A (TFAM), a key activator of
the mitochondrial genome transcription and replication [32]. Notably, low concentrations of BPBE
caused a statistically significant ten-fold increase in the transcription level of PGC-1α, whereas FPBE at
the same dilution elicited a smaller two-fold increase of the same transcript although still statistically
significant. To support the effect on the PGC-1α transcription observed at low concentrations of BPBE,
we also checked the transcript levels of two genes coding for the nuclear transcription factors 1 and
2 (NRF1, NRF2), which are also involved in mitochondrial biogenesis but, in turn, are controlled by
PGC-1α [32]. The results obtained show that both NRF1 and NRF2 expression was about ten-fold
higher following low-dosage BPBE-treatment as compared with untreated cells. A two-fold increase in
NRF2 was also observed at low-dosage FPBE-treatment. At intermediate dilution of both the bone
extracts, a sharp decline of the PGC-1α transcript level was observed. Conversely, no significant
changes were observed following treatment with the pure OTC at the two concentrations tested.
Finally, we measured the expression level of genes coding for factors involved in the mitochondrial
quality control, which is a multi-steps process whereby cells activate a selective removal of damaged
mitochondria in response to stressing conditions [33]. PINK1, Parkin, and BNIP3L (also known as NIX)
are proteins that target mitochondria for degradation into intracellular autophagosomes. Analysis of
the transcription levels of these mitophagic factors revealed a complex compound- and dose-dependent
profile with a significant 50% reduction in the transcript level of all the three factors only under the
condition of low-dosage BPBE-treatment (Figure 6B).
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Figure 6. Effect of chicken bone powder treatment on the transcription of selected genes involved in
mitochondriogenesis and mitophagy in K562 cells. Cells were treated with either BPBE, FBPE, or OTC
at the indicated concentrations and subjected to quantitative RT-PCR on extracted RNA as detailed in
Materials and Methods. The expression of the indicated selected genes involved in the mitochondrial
biogenesis (A) or mitophagic processing (B) is shown as fold changes of the untreated (CTRL) cells (in
a log scale); bars are means ± SEM of three independent experiments with three technical replicates
under each condition; *p < 0.05 as compared with CTRL.

3. Materials and Methods

3.1. Chicken Bone Extract

The treatment of chicken was in accordance with the guidelines of European and Italian laws, and
the study protocol was as detailed in [20]. Briefly, thirty-six 1-day-old male and female broiler chickens
(Ross 708) were randomly assigned to 2 groups, the control (n = 18) and treated (OTC) animals (n = 18).
The oxytetracycline-treated group received OTC in its liquid form (Ossitetraciclina liquida 20%, TreI,
Reggio Emilia, Italy) at a dosage of 40 mg/kg live weight via drinking water at day 1, 5, 20, and 25.
The withdrawal time, at day 10, was applied between the last OTC administration and slaughtering,
that occurred on day 35. After slaughtering, the bones collected from deboned breast and leg were
dried, broken, autoclaved, finely ground, and stored at −20 ◦C. For the evaluation of OTC, ground
bone samples were treated with McIlvaine-Na2 EDTA 0.1 M buffer (pH 4) and the extracts assayed
by liquid chromatography-electrospray interface (ESI) mass spectrometry (MS)/MS system (Walnut,
Creek, CA, United States). The instrument was calibrated with a known amount of OTC, and the limit
of detection was 0.5 mg/kg (see [20] for further details).
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3.2. Cell Culture and Compound Treatment

The human lymphoblast derived K562 cell line was purchased from the American Type Culture
Collection (ATCC, Manassas, Virginia, USA) and cultured at 37 ◦C in a humidified atmosphere (5% CO2)
in RPMI (Sigma–Aldrich, St. Louis, Missouri, USA) medium for 48 h. Oxytetracycline (OTC) from
Sigma–Aldrich (St. Louis, Missouri, USA) was stocked at 100 mM in DMSO (Sigma–Aldrich, St. Louis,
Missouri, USA). Bone powder, achieved from poultry raised with or without the administration
of oxytetracycline, was extracted in cell culture medium as previously described [19,20]. Briefly,
the bone powder was dissolved in RPMI at the concentration of 124 mg/mL and kept under continuous
stirring at 37 ◦C for 48 h. After that, the suspension was filtered, and the filtrate neutralized
with KOH (Sigma–Aldrich, St. Louis, Missouri, USA) at pH 7.2–7.4. For compound treatment,
0.5–2.0 × 106 cells/mL were supplemented with graded concentration of OTC or graded dilution of
bone powder extracts as indicated. The viability of K562 cells was assessed before and after treatments
by direct counting Trypan Blue-negative cells with a hemocytometer.

3.3. Metabolic Flux Analysis

Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured with
an XF96 Extracellular Flux Analyzer (Seahorse Bioscience, Billerica, MA, USA) in RPMI following
cytospinning of the K562 cells in the wells of the Seahorse cartridge. The medium was supplemented
with 1 mM pyruvate, 2 mM glutamine, 10 mM glucose for OCR measurements or with 1 mM pyruvate,
2 mM glutamine for ECAR measurements. Briefly, for OCR analysis, after measuring basal respiration,
oligomycin (1 µM), FCCP (1 µM), and rotenone + antimycin A (1 µM + 1 µM) were injected into each
well sequentially to assess coupling of the respiratory chain, maximal and nonmitochondrial oxygen
consumption, respectively. For ECAR analysis, glycolytic flux (basal glycolysis, glycolytic capacity,
and glycolytic reserve) was analyzed by the sequential addition of 10 mM glucose, 1 µM oligomycin,
and 100 mM 2-deoxyglucose. OCR and ECAR values were normalized to the cell number in each well.

3.4. Confocal Microscopy Imaging

Cells were cytospun on fibronectin-coated (Cell-tak-coated (Corning, New York, USA)) 35-mm
glass-bottom dishes (Ibidi, Gräfelfing, Germany)] and incubated for 20 min at 37 ◦C with 100 nM
Tetramethylrhodamine, ethyl ester (TMRE, Life Technologies, Carlsbad, CA, USA) to detect the
mitochondrial membrane potential or with 5 µM DCF-DA (2,7-dichlorofluorescin diacetate) (Molecular
Probes, Eugene, Oregon, USA) to detect cellular peroxide. Stained cells were washed with PBS and
examined by a Leica (Wetzlar, Germany) TCS SP8 confocal laser scanning microscopy system utilizing
appropriate excitation laser beams (images collected using a 60X objective (1.4 NA)). Acquisition,
storage, and analysis of data were performed with LasX software from Leica or ImageJ 1.48 (Wayne
Rasband, NIH, Bethesda, Maryland, USA).

3.5. RNA Isolation and Quantitative RT-PCR

Total RNA from the K562 cell line was extracted using an Aurum Total RNAMini Kit (Bio-Rad,
Hercules, CA, USA) according to the manufacturer’s protocol. 0.5 mg of total RNA was then
reverse-transcribed to generate cDNA for PCR by using the iScript cDNA Synthesis kit (Bio-Rad,
Hercules, CA, USA). Semi-quantitative determination of mRNA levels was performed by real-time
qRT-PCR using SYBR Green (Bio-Rad, Hercules, CA, USA). Reactions were performed in duplicate for
each sample. Multiple reactions were performed in a volume of 20 µL containing 10 µL of 2 × PCR
master mix, 1X of validated specific primers (Qiagen, Hilden, Germany) (see Table 1), and 2 µL of
cDNA template. Amplifications were performed in the Stratagene MX3000P Real-Time PCR Detection
System (Stratagene, San Diego, CA, USA), using the following cycle program: denaturation step
at 95 ◦C for 10 min followed by 40 cycles of denaturation at 95 ◦C for 15 s, annealing at 55 ◦C for
1 min, and extension at 72 ◦C for 30 s. The relative mRNA expression levels were calculated using
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the comparative CT method (2-∆∆CT). Quantitative normalization for each sample was performed
by using glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Qiagen, Hilden, Germany) as an
internal control.

Table 1. List of primers used to amplify the transcripts of the indicated genes by q-RT-PCR.

Gene Product Number

PPARGC1A QT00095578

TFAM QT00012782

NRF1 QT01154076

NRF2 QT01192688

PINK1 QT00056630

PARK2 QT00023401

BNIP3L QT00022939

GAPDH QT00079247

3.6. Statistical Analysis

All the experiments were carried out in triplicate. Data are shown as mean ± standard error mean
(SEM) and compared by the unpaired Student’s t-test or one-way ANOVA, followed by Bonferroni
post-hoc test; a *p-value < 0.05 was accepted as statistically significant. All analyses were performed
using Graph Pad Prism (Graph Pad software, San Diego, CA, USA).

4. Discussion

The results presented in this study allow drawing the following conclusions schematized in
Figure 7.

Pharmaceuticals 2020, 13, x FOR PEER REVIEW 12 of 15 

 

and extension at 72 °C for 30 s. The relative mRNA expression levels were calculated using the 
comparative CT method (2-ΔΔCT). Quantitative normalization for each sample was performed by using 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Qiagen, Hilden, Germany) as an internal 
control. 

Table 1. List of primers used to amplify the transcripts of the indicated genes by q-RT-PCR. 

Gene  Product Number 
PPARGC1A QT00095578 

TFAM QT00012782 
NRF1 QT01154076 
NRF2 QT01192688 
PINK1 QT00056630 
PARK2 QT00023401 
BNIP3L QT00022939 
GAPDH QT00079247 

3.6.  Statistical Analysis 

All the experiments were carried out in triplicate. Data are shown as mean ± standard error mean 
(SEM) and compared by the unpaired Student’s t-test or one-way ANOVA, followed by Bonferroni 
post-hoc test; a *p-value < 0.05 was accepted as statistically significant. All analyses were performed 
using Graph Pad Prism (Graph Pad software, San Diego, CA, USA). 

4. Discussion 

The results presented in this study allow drawing the following conclusions schematized in 
Figure 7. 

 
Figure 7. Schematic drawing of the major effects of chicken bone extracts on mitochondrial function 
described in this study; the circled “+” an “−“ indicate stimulation and inhibition, respectively, of the 
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indicated function with the thickness of the line proportional to the intensity of the effect. OXPHOS,
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The bone extracts from chicken raised with or without prophylactic antibiotic administration exert
complex dose-dependent effects on the metabolism of the K562 cells. The outcome profile appeared
to be biphasic, being cytotoxic at relatively high concentrations but metabolism-stimulating at very
low concentrations. The metabolic stimulation consisted essentially of an increased mitochondrial
respiration with limited effects on glycolysis. Consequently, this translated into a metabolic shift
toward a more efficient ATP-generating mitochondrial OxPhos. Comparatively, the BPBE appeared
slightly more efficient than FPBE to elicit the low-dosage-mediated metabolic shift. Assuming that the
amount of OTC extractable from FPBE is in the order of 1.2–1.3 µg of the antibiotic/Kg bone powder [20],
it is easy to calculate that in our condition the K562 cells treated with FPBE were likely exposed to
a concentration of OTC ranging from 5.4 to 335 µM at the highest and lowest dilution of the extract,
respectively. On this basis, as the pure OTC at concentrations comparable with that released in the FPBE
at the highest dilution did not cause appreciable metabolic changes, this would rule out a contribution
of the antibiotic to the differential metabolic impact observed in the BPBE- and FPBE-treated cells.
Higher concentrations of bone extracts, regardless of their source, caused a progressive inhibition of
both the mitochondrial respiratory activity and glycolysis, though more pronounced in the former.
This established a condition of bioenergetic crisis with a consequent reduction in cell viability.

Mechanistically, the observed low-dosage-mediated stimulation of the aerobic metabolism
appeared to be linked to changes in the expression of genes controlling the mitochondrial biogenesis
and/or the mitophagic removal of the organelles. A combination of these two processes was particularly
evident at the lowest concentration of BPBE and FPBE, though to a much lesser extent in the latter.
In addition, in this case, the differential transcriptional impact of FBPE treatment cannot be ascribed
to antibiotics since pure OTC did not result in significant changes in the transcription profile of
the analyzed factors. At higher concentrations of the bone extracts, the stimulatory effect on the
mitochondriogenic transcription factors was lost, and other effects prevailed leading to cell sufferance
and death.

5. Study Limitations

The major limitation of this study is that it was carried out on a single cell line. However, in a
previous investigation, we challenged human peripheral blood mononuclear cells (PBMC) with bone
extracts observing a proinflammatory effect [20]. Extension of this study on the specific effect of the
bone extract on the mitochondrial function of different primary cells and cell lines is ongoing in our
labs. A further limitation is that our findings do not enable us to draw definitive conclusions on their
impact on the consumer. The FDA and WHO have recently established residue limits of tetracyclines
in several alimentary matrices (such as liver, kidney, fat) but not for bone that is considered inedible,
in spite of the fact that tetracyclines have a high affinity for calcium-rich tissues, such as bone and
teeth. The effect, here shown, exerted by chicken bone extracts, even at very low concentrations, in
modifying the cellular energy metabolism is a warning for the need for further in-depth investigations
to define the effect of alimentary bone-derivative supplements on the consumer health.

6. Conclusions

In conclusion the presented results suggest that under the experimental conditions tested in
this study, bone powder contains and releases factors/chemicals, that regardless if derived from
naturally (antibiotic-untreated) or intensively farmed (antibiotics-treated) poultry, are responsible
for the observed effects on mitochondrial metabolism. The quantitative differential effects observed
between BPBE- and FPBE-treatment appear to depend on biochemical alterations in the bone matrix
caused by antibiotics rather than by the antibiotics themselves [1,2]. In addition to the identification
of the chemical nature of the bioactive compounds released from the bone matrix, it remains to be
established (i) if other cells, phenotypically different from the K562 cells tested in this study, rewire
their metabolism following low-dosage bone extract-treatment and (ii) the mechanism(s) of cell death
occurring at high-dosage treatment.
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