88 research outputs found

    A brief history of the Italian marine biology

    Get PDF
    This paper is a short history of Italian marine biology, starting from the mid 16th century. During the Renaissance, a profound curiosity for marine sciences animated the scientific thought and several Italian naturalists started to collect rare and unusual marine items, sometimes acting with little critical sense towards medieval unbelievable legends. The 17th and 18th centuries saw a development of botany and zoology as modern disciplines and Italian scholars started to study the Mediterranean fauna and flora. They became active mainly at the Universities of Trieste, Venice, Palermo, Naples, Rome and Genoa and in other scientific institutions that arose under the different political regimes in which Italy was divided at that time. The Kingdom of Italy, born in 1861 with enormous financial difficulties, was interested in reaching an international scientific limelight: hence, some oceanographic expeditions were organized all around the world with a significant collection of data and specimens. The scientific interest for sea life increased and became at international level at the end of the 19th century, with the foundations of the first shore-based Zoological Stations in Trieste and Naples. At the beginning of the 20th century, intensive studies of inshore benthic communities by dredging and, afterwards by diving, started concurrently with those on structure and dynamics of plankton and fish populations which yielded a significant knowledge of the marine life from the Mediterranean continental platform. After the Second World War, the fundamental studies conducted at the Zoological Station of Naples on genetics, embryology and developmental biology using marine organisms as study models, were spread to different universities, going to constitute an Italian school of experimental embryology of international value. Today, the modern Italian marine biology is increasingly multi-disciplinary, requiring the participation of biochemists, geneticists and mathematicians and it opens up to new frontiers often linked to the global changes

    Wellbeing Costs of Technology Use during Covid-19 Remote Working: An Investigation Using the Italian Translation of the Technostress Creators Scale

    Get PDF
    During the first months of 2020, the Covid-19 pandemic has affected several countries all over the world, including Italy. To prevent the spread of the virus, governments instructed employers and self-employed workers to close their offices and work from home. Thus, the use of remote working increased during the pandemic and is expected to maintain high levels of application even after the emergency. Despite its benefits for both organizations and workers, remote working entails negative consequences, such as technostress. The present study had a double aim: to test the psychometric characteristics of the Italian translation of the brief version of the technostress creators scale and to apply the scale to investigate technostress during the Covid-19 emergency. The research involved 878 participants for the first study and 749 participants for the second one; they completed a self-report online questionnaire. Results confirmed the three-factor structure of the Italian technostress creators scale and highlighted positive relationships between workload, techno-stressors, work–family conflict and behavioural stress. The role of remote working conditions has been analysed as well. The study provided a useful tool for the investigation of technostress in the Italian context. Moreover, it provided indications for practice in the field of remote working and workers’ wellbein

    Physiological response of the coralline alga Corallina officinalis L. to both predicted long-term increases in temperature and short-term heatwave events

    Get PDF
    This work was supported by the European Cooperation in Science and Technology (COST) within the COST Action CA15121, advancing marine conservation in the European and contiguous seas (MarCons).Climate change is leading to an increase of mean sea surface temperatures and extreme heat events. There is an urgent need to better understand the capabilities of marine macroalgae to adapt to these rapid changes. In this study, the responses of photosynthesis, respiration, and calcification to elevated temperature in a global warming scenario were investigated in the coralline alga Corallina officinalis. Algae were cultured for 7 weeks under 4 temperature treatments: (1) control under ambient-summer conditions (C, ∌20 °C), (2) simulating a one-week heatwave of 1 °C (HW, Tcontrol+1 °C), (3) elevated temperature (+3, Tcontrol +3 °C), (4) combination of the two previous treatments (HW+3, T+3+1 °C). After exposure at T+3 (up to a Tmax of ∌23 °C), respiration and photosynthesis increased significantly. After 5 weeks, calcification rates were higher at elevated temperatures (T+3 and THW+3) compared to Tcontrol, but at the end of the experiment (7 weeks) calcification decreased significantly at those temperatures beyond the thermal optimum (six-fold at T+3, and three-fold at THW+3, respectively). The same trend was noted for all the physiological processes, suggesting that a prolonged exposure to high temperatures (7 weeks up to T+3) negatively affect the physiology of C. officinalis, as a possible consequence of thermal stress. A one-week heatwave of +1 °C with respect to Tcontrol (at THW) did not affect respiration, photosynthesis, or calcification rates. Conversely, a heatwave of 1 °C, when combined with the 3 °C increase predicted by the end of the century (at THW+3), induced a reduction of physiological rates. Continued increases in both the intensity and frequency of heatwaves under anthropogenic climate change may lead to reduced growth and survival of primary producers such as C. officinalis.PostprintPeer reviewe

    Assessment of Structural and Functional Diversity of Mollusc Assemblages within Vermetid Bioconstructions

    Get PDF
    Dendropoma lebeche is a prosobranch gastropod belonging to the family Vermetidae, which calcifies its shell on hard substrates in dense aggregates, forming biogenic constructions along the western Mediterranean intertidal habitat. It is an important ecosystem engineer and, due to its ecological value, is protected by international convention. The aim of this study is to investigate the mollusc composition and diversity occurring within Spanish vermetid bioconstructions. During the late summer 2013, three distant sites along the Mediterranean coast of Spain were sampled by scraping off the vermetid shells to study their associated assemblages. A total of 600 molluscs were identified within the classes of Polyplacophora (four species), Gastropoda (35 spp.) and Bivalvia (18 spp.). Multivariate analyses revealed significant differences in composition and trophic diversity of mollusc assemblages among the three sites, highlighting a clear geographical gradient. Overall, both herbivores (grazers and deposit feeders) and omnivores were the quantitatively dominant trophic groups, while carnivores (predators and ectoparasites) were very scarce. Our results point out that mollusc assemblages associated with vermetid bioconstructions are rich and diversified, both in populations structure and trophic diversity, confirming the important role of vermetid gastropods as ecosystem engineers and biodiversity enhancers in shallow coastal waters.This study was funded by the Italian Ministry for Education, Universities and Research (Z8HJ5M_008; P.R.I.N. Program 2010–2011: project “Marine bioconstructions: structure, function and management”), and by a Ph.D. fellowship of the first author L.D. (Doctorate in Marine, Terrestrial and Climate Sciences, University of Naples Parthenope)

    The ASTRI camera for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) foresees, in its southern site (Chile), the implementation of up to 70 small-sized telescopes (SSTs), which will extend the energy coverage up to hundreds of TeV. It has been proposed that one of the first set of CTA SSTs will be represented by the ASTRI mini-array, which includes (at least) nine ASTRI telescopes. The endto-end prototype of such telescopes, named the ASTRI SST-2M, is installed in Italy and it is now completing the overall commissioning and entering the science verification phase. ASTRI telescopes are characterized by an optical system based on a dual-mirror Schwarzschild-Couder design and a camera at the focal plane composed of silicon photomultiplier sensors managed by a fast read-out electronics specifically designed. Based on a custom peak-detector mode, the ASTRI camera electronics is designed to perform Cherenkov signal detection, trigger generation, digital conversion of the signals and data transmission to the camera server. In this contribution we will describe the main features of the ASTRI camera, its performance and results obtained during the commissioning phase of the ASTRI SST-2M prototype in view of the ASTRI mini-array implementation

    A New Orbiting Deployable System for Small Satellite Observations for Ecology and Earth Observation

    Get PDF
    In this paper, we present several study cases focused on marine, oceanographic, and atmospheric environments, which would greatly benefit from the use of a deployable system for small satellite observations. As opposed to the large standard ones, small satellites have become an effective and affordable alternative access to space, owing to their lower costs, innovative design and technology, and higher revisiting times, when launched in a constellation configuration. One of the biggest challenges is created by the small satellite instrumentation working in the visible (VIS), infrared (IR), and microwave (MW) spectral ranges, for which the resolution of the acquired data depends on the physical dimension of the telescope and the antenna collecting the signal. In this respect, a deployable payload, fitting the limited size and mass imposed by the small satellite architecture, once unfolded in space, can reach performances similar to those of larger satellites. In this study, we show how ecology and Earth Observations can benefit from data acquired by small satellites, and how they can be further improved thanks to deployable payloads. We focus on DORA—Deployable Optics for Remote sensing Applications—in the VIS to TIR spectral range, and on a planned application in the MW spectral range, and we carry out a radiometric analysis to verify its performances for Earth Observation studies

    The High-Level Interface Definitions in the ASTRI/CTA Mini Array Software System (MASS)

    Get PDF
    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project funded by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. Within this framework, INAF is currently developing an end-to-end prototype, named ASTRI SST-2M, of a Small Size Dual-Mirror Telescope for the Cherenkov Telescope Array, CTA. A second goal of the project is the realization of the ASTRI/CTA mini-array, which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The ASTRI Mini Array Software System (MASS) is designed to support the ASTRI/CTA mini-array operations. MASS is being built on top of the ALMA Common Software (ACS) framework, which provides support for the implementation of distributed data acquisition and control systems, and functionality for log and alarm management, message driven communication and hardware devices management. The first version of the MASS system, which will comply with the CTA requirements and guidelines, will be tested on the ASTRI SST-2M prototype. In this contribution we present the interface definitions of the MASS high level components in charge of the ASTRI SST-2M observation scheduling, telescope control and monitoring, and data taking. Particular emphasis is given to their potential reuse for the ASTRI/CTA mini-array

    The Virgo 3 km interferometer for gravitational wave detection

    Get PDF
    Virgo, designed, constructed and developed by the French-Italian VIRGO collaboration located in Cascina (Pisa, Italy) and aiming to detect gravitational waves, is a ground-based power recycled Michelson interferometer, with 3 km long suspended Fabry-Perot cavities. The first Virgo scientific data-taking started in mid-May 2007, in coincidence with the corresponding LIGO detectors. The optical scheme of the interferometer and the various optical techniques used in the experiment, such as the laser source, control, alignment, stabilization and detection strategies are outlined. The future upgrades that are planned for Virgo from the optical point of view, especially concerning the evolution of the Virgo laser, are presented. Finally, the next generation of the gravitational wave detector (advanced Virgo) is introduced from the point of view of the laser system

    The Software Architecture and development approach for the ASTRI Mini-Array gamma-ray air-Cherenkov experiment at the Observatorio del Teide

    Get PDF
    The ASTRI Mini-Array is an international collaboration led by the Italian National Institute for Astrophysics (INAF) and devoted to the imaging of atmospheric Cherenkov light for very-high gamma-ray astronomy. The project is deploying an array of 9 telescopes sensitive above 1 TeV. In this contribution, we present the architecture of the software that covers the entire life cycle of the observatory, from scheduling to remote operations and data dissemination. The high-speed networking connection available between the observatory site, at the Canary Islands, and the Data Center in Rome allows for ready data availability for stereo triggering and data processing
    • 

    corecore