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ABSTRACT
Climate change is leading to an increase of mearsgdace temperatures and extreme heat events.
There is an urgent need to better understand thebdaies of marine macroalgae to adapt to these
rapid changesin this study, the responses of photosynthesigirefon, and calcification to
elevated temperature in a global warming scenaeewnvestigated in the coralline alGarallina
officinalis. Algae were cultured for 7 weeks under 4 tempeeatteatments: (1) control under
ambient-summer conditions (C, ~20°C), (2) simulatia one-week heatwave of 1°C (HW,
Teontrot1°C), (3
) elevated temperature (+3godiro +3°C), (4) combination of the two previous treattsefH\W+3,
T.3t1°C). After exposure at. % (up to a Thax of ~23°C), respiration and photosynthesis increase
significantly.After 5 weeks, calcification rates were higherlatated temperatures.@and Tyws3)
compared to dontroy but at the end of the experiment (7 weeks) daltibn decreased significantly
at those temperatures beyond the thermal optimurafqlel at T.3, and three-fold at Fw+s,
respectively). The same trend was noted for all ghgsiological processes, suggesting that a
prolonged exposure to high temperatures (7 weeks ;) negatively affect the physiology &f
officinalis, as a possible consequence of thermal stresseAveek heatwave of +1°C with respect
to Teontrol (@t Tuw) did not affect respiration, photosynthesis, dcifiaation rates. Conversely, a
heatwave of 1°C, when combined with the 3°C in@easedicted by the end of the century (at
Thw+3), induced a reduction of physiological rates. @orgd increases in both the intensity and
frequency of heatwaves under anthropogenic clincange may lead to reduced growth and

survival of primary producers such @sofficinalis.

Keywords. algae, climate change, ocean warming, temperature, heatwaves, thermal stress,

calcification, photosynthesis, respiration.
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1. Introduction
Climate change is occurring at a faster rate thahe past, due to increasing concentrations
of greenhouse gases in the Earth’'s atmospheredtéyskeuman combustion of fossil fuels
and deforestation (IPCC, 2014). This results imaasing seawater temperatures, rising sea
levels, and ocean acidification (IPCC, 2014). Thierdnational Panel on Climate Change
(IPCC) indicated that global mean surface tempesatuhave already risen by
approximately 0.87°C in the last one and a haltwess (over the period 1850-2015), and
will likely increase further (by ca. 3°C by the eofdthis century, according to the pathways
reflecting present nationally stated mitigation Igmg2030; Masson-Delmotte et al., 2018).
In addition to long-term warming, extreme event®.(i storms, droughts, floods and
heatwaves) are also becoming more frequent and mteese (Coumou and Rahmstorf,
2012; Perkins et @l2012; Oliver et al., 2018, Frolicher et al., 20D&rmaraki et al., 2019).
Specifically, marine heatwaves (MHWSs) can stronigiffuence ecosystem structure and
functioning by causing widespread mortality, spegi@nge shifts and community changes
(Jentsch et al., 2007; Hobday et al., 2016, Snteé,e2019).
Increasing sea surface temperature (SST) is amloagmain impacts affecting marine
ecosystems (Stenseth et al., 2002), which caneinfle the abundance and distribution of
marine organisms, and lead to poleward range stiféxtinctions of populations located at
the edge of their thermal tolerance (Perry et24Q5; Wernberg et al., 2011; Yara et al.,
2012; Jueterbock et al., 2013; Sanford et al., 2€dlin et al., 2018; Kolzenburg et al.,
2019). Elevated temperatures can lead to sevelegecal impacts, including widespread
mortality of benthic communities (Garrabou et 2D09), loss of seagrass habitats (Marba
and Duarte, 2010), and impacts on fishertkge to changes in primary productivity and

shifts in distribution or mass mortality eventsspiecies of commercial interest (Sumaila et
3
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al., 2011; Mills et al., 2013; Capuiti et al., 2015) particular, water temperature is a major
factor controlling the survival, growth and reprotan of macroalgae, and thus plays an
important role in governing both the smadicale vertical and the largscale geographical
distribution of macroalgal species, in additiortheir abundance (Breeman, 1988; Liining,
1990; Nannini et al 2015). For this reason, it is worth understandihg biological
responses of climate-sensitive organisms to skont-extreme events, in concurrence with
long-term changes (Jentsch et al., 2007).

Coralline red algae (Rhodophyta) are fundamentdtifgang primary producers and
important habitat-forming species present in mosistal ecosystems, such as coralligenous
bioconstructions (Johansen, 1981; Ferrigno e8all,7; Ingrosso et al., 2018). The species
Corallina officinalis (Linnaeus 1758) is an erect calcifying alga withide distribution that
dominates North Atlantic rocky shores and rock pqdVilliamson et al., 2015). Due to its
complex morphological structure, it representsmapdrtant substratum for the settlement of
other macroalgae and microalgae, and supportshalhagliversity of marine invertebrates
(Akioka et al., 1999; Kelaher, 2003). Despite thepamance of coralline algae, their
sensitivity to increasing temperatures is still leac, as different studies have yielded
conflicting results (Martin et al., 2013; Comeau at, 2014; Vasquez-Elizondo and
Enriquez, 2016). There is further uncertainty atbtire response . officinalis in rock
pool habitats, as the species must adapt to maikipéssors, including highly variable water
temperatures across seasonal, diurnal and tideEgd/illiamson et al., 2017).

In this study, we describe the physiological resgsnofC. officinalis to temperature
variation in an ocean warming scenario (RCP 8.80P2014), taking into account natural
thermal fluctuations experienced within rock paatsoss periods of low and high tides (i.e.,

AT = ~3.5°C, recorded in the field; see Fig. 2). Speally, we analysed photosynthesis,
4
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respiration, and dark/light calcification ratesaoSouth-East UK population exposed to both
a temperature increase of +3°C (i.e., simulatirg) wWarming expected by the end of this
century; Solomon et al., 2007), and a marine heawsaimilar to those registered over the

last century, and attributed to anthropogenic demange; Oliver et al., 2018).

2. Materialsand methods
2.1. Biological material
Specimens of the articulated coralline a@arallina officinalis were collected during low
tide in intertidal rock pools at + 0.3 m depth of. Margarets Bay (Kent, UK;
51°08'52.9"N, 1°23'06.9"E) in September 2017. Sesawdemperature measured at the time
of sampling with a HQ30D flexi multi-meter (Hach &rmmnmental, Loveland, CO, USA)
was 15.7+0.2°C. Algae were immediately transpo(tedihours) in temperaturensulating
containers to the Institute of Marine Sciences,vgrsity of Portsmouth, UK, where the
experiment was carried out. Healthy thalli in tiEesange of 3-10 cfrwere selected for
the experiment, and were carefully cleaned of giplorganisms, avoiding any damage.
Algae were fixed on small stones, in order to sateinatural conditions and keep them
upright, and guarantee the same light conditionsaich branch as much as possible (~3 g

fresh weight for each stone), see Fig. 1.

2.2. Experimental design

Temperature and irradiance during the experimemewset according to ambient summer
conditions recorded daily in the field in July-Awgu2017 by a HOBO pendant

temperature/light data logger (Onset Computer C@&purne, MA, USA) placed in a rock

pool of the collection site. Algae were acclimated 15-L aquaria in a closed seawater
5
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system for 2 weeks before the gradual increase atemw temperature. During
acclimatization, algae were maintained at a 14idbt:dark photoperiod, with UV light
oscillating in the range 20-3@mol m’s* (measured at the position of the submerged algal
fronds in the experimental tanks, mimicking sun aetl sun rise and with controlled
dimming during the day as cloud effect), while teenperature (T) changed during 24h
from a T, of ~16.5£0.1°C to a . of ~20+0.1°C, around a mean temperature value of
18.51£1.2°C, reflecting the T oscillations of daitides recorded in the field. After
acclimatization, specimens were assigned to 16-k gthss aquaria (4 tanks per treatment)
under 4 temperature conditions. Each aquarium gwdahree algae-stones, for a total of
12 algae/stones per temperature treatment (FigAdoaria were kept in a closed system
with seawater sourced directly from the sea offltistitute of Marine Sciences (University
of Portsmouth, UK; 50°47°40.7”N, 1°01'50.1"W) angrocessed via a settlement system
with glass media filtration (salinity ranging fro8#.4 to 35.2). Ten percent of the aquaria
water was exchanged every other day, in order &p keutrient levels and alkalinity
constant. The four temperature treatments (Figv&e: (1) control treatment (C), kept at
the in situ acclimatization temperature, with a temperatugeos$cillating according to a
thermal range reflective of the daily tides recaorde the field (16.5°€T<20°C); (2)
heatwave treatment (HW), where a heatwave was ateullby inducing a temperature
increase of +1°C for a period of 1 weekwF Tc+1°C; 17.5°GTyw<21°C); (3) elevated
temperature treatment (+3), where the temperataeincreased by +3°C according to the
predicted temperature increase due to climate @adngthe year 2100 (I=T-+3°C;
19.5°C<T,5<23°C; Solomon et al., 2007); (4) treatment obtdibg the combination of the
two previous treatments (HW+3), with a +4°C tempa® increase (Jw.3=Tc+3°C+1°C;

20.5°CTHw+3<24°C). Temperature was increased at a rate of QpgtQlay (over a period
6
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of 6 days) to reacthe +3°Ctemperature change, and of 0.5°C per hour (ovariag of 1
hour) when simulating the MHW. Water temperaturalintanks was monitored daily with
a HQ30D flexi multi-meter (Hach Environmental, Léamed, CO, USA), and had a
continual logging every 15 min with a HOBO penddata logger (Onset Computer Corp.,
Bourne,MA, USA). Irradiance levels were monitored throughdhe experiment with a
Quantitherm light-meter (QRT-1, Hansatech Instrumsedorfolk, UK). pH and salinity
were measured using the HQ30D flexi multi-meter gdy and salinity probes (Hach
Environmental, Loveland, CO, USA). Total Alkalinityas measured by potentiometric
titration (TitroLine 7000, Schott SI Analytics, Me, German) following the SOP6 protocol
(Dickson et al., 2007). Measurements were validagainst Dickson standard (batch #154).
Other parameters of the carbonate chemistry wdmeilated using the software CO2Sys,
EXCEL Macro version 2.1 (Lewis et al., 1998Vater motion and filtration in the aquaria

was ensured by a submersible pumpR@wverPump 800, TMC, London, UK).

Fig. 1. Experimental set-up with four temperature treatimdéc, HW, +3, HW+3). Each
treatment was performed in a large tank, acting aster bath, in which four 11-L glass
aquaria were immersed (a total of 16 aquaria). fEgquarium contained three algae-stones

(as showed in the detail, top right).
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2.3. Marine heatwave calculation

A one-week MHW of 1°C was calculated in accordateehe definition provided by
Hobday et al. (2016), i.e., referring to the tenapare values exceeding the”gpercentile
threshold of the SST measured for at least fiveseoutive days in the same 30-day-period
window over the last 30 years. S8ilsitu data were obtained from the closest NOAA buoy
to the collection site, located off the South UKaSb(about 40 km) along the Greenwich
meridian (Station 50°24'0" N 0°0'0" E; National Ba@&uoy Center, National Oceanic and

Atmospheric administration; www.ndbc.noaa.govistatpage.php?station=62305).

)
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Fig. 2. Daily plannedemperature changes in the experimental tankshéod ttreatments (C,

HW, +3, HW+3). The temperature fluctuation in tlentol (C) was performed simulating
the environmental thermal excursion due to theydides, as recorded in the field. The
MHW was performed in the treatments HW and HW+3] &sted for one week (for more

details see Fig. 3).
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2.4. Physiological measurements

Algal thalli (1 g/fresh weight from each tank atckaime point) were incubated in 50-ml
closed oxygen chambers filled with bubble-free ssaw from the aquaria. One hour
incubations were conducted under saturating ligimdition (300xzmol mi*s™; Ralph and
Gademann, 2005) and in the dark. The irradiancgldenvere controlled with a Quantitherm
Light Meter (QRT-1, Hansatech Instruments, Norfdlk). The chambers were used to
assess net photosynthesig) (Bnd calcification in the light (& while chambers covered
with aluminium foils were used to assess dark raipn (Ry) and calcification in the dark
(Gg). The concentration of dissolved oxygen,,(@mol I'Y) was measured inside the
chambers before and after incubatiomsing a HQ30D flexi oxygen meter (Hach
Environmental). Water samples were taken at theinbewyy and at the end of the
incubations for measurements of pHT (pH on thd sxale) and total alkalinit{A+).

P, and R, expressed in terms of,@roduction and consumption (imol O, gFW* hh),
were calculated after Williamson et al. (2017):

A0, v
fw At

P,(or Ry) =

where0;, is the difference in ©concentration before and after incubatiomél I'* h'), v
is the volume of the incubation tubes @), is the fresh weight of the algae incubated (g)
and4t is the incubation time (h).
Gross photosynthesis)Rvas calculated as:
Fy = |Pal + [R4]
G and G (umol CaCQ gFW* h') were calculated using the alkalinity anomaly téghe

(Smith and Key, 1975) as:
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Gl (OT‘ Gd) =

wheredAqis the difference between initial and fina} #alues feq I').

Physiological measurements were taken in all treatsnat 3 different times during the
experiment (Fig. 3):

* t,= before the MHW start (4-weeks); i.e., after 2 kgeef acclimatization at the initial
temperature Lo, 1 Week of gradual heating up tqsTand 1 week of acclimatization at
T.3 (the heating up to,k was induced only in treatments +3 and HW+3);

* t,= right after the MHW end (5-weeks); i.e., 1 wedkHW at T, after § (the HW was
induced only in treatments HW and HW+3);

* t;= after a recovery period from the MHW end (7-week®), 2 weeks of recovery from

the heatwave-end after t

4 1 ey
—C | \
-——-HW \
3 ______ +3 II,_ __________________________
----- Hws3 o/
© /
= /
< /
;
1 ; P
4 .' H
/ |' |
0 s
0 1 2 3 4 (t) 5 (k) 6 7 ()
Time (week)

Fig. 3. Planned temperature changes during the experimehé 4 treatments (C, HW, +3,
HW+3). Physiological measurements were taken itr@ditments at 3 different times:(4-
weeks), before the MHW start; (5-weeks), right after the MHW end;(7-weeks)after a

recoveryperiod from the MHW end.

10



212 2.5. Data analysis

213  We used linear-mixed effects models (LMMs) to exaamwhether temperature treatments
214  influenced photosynthesis, respiration, and calation rates. Models were developed in the
215 nlme package in R v3.6.0 (Bates et al.,, 2015; Pinhetral., 2019) with both time and
216 temperature (as well as their interaction) treagdixed effects, and tank ID included as a
217 random effect to account for autocorrelated ereor®ng algae grown in the same tanks
218 (Speights et al., 2017). Model residuals were \iguaspected using QQ plots and residual
219 plots and formally checked for normality and honexksticity via Shapiro-Wilks and
220 Levene’s tests, respectively. Heterogeneity indusi variance was only identified in the
221 calcification models, and was addressed with amggpjate structure (varldent), allowing
222 residuals to differ in spread between temperat@aments across time without the need to
223 transform the data (Pinheiro and Bates, 2000; Blamriet al., 2018). Results are expressed
224 as mearx standard error of the mean (SR)s the sample size and are Tukey-adjusteg

225  values, evaluated against a significance thresbiadd= 0.05.

226 3. Results

227 3.1. Respiration

228 LMMSs explained over 76% of the variation in darlspiation (R) [conditional pseudo-R
229 = 0.763; Nakagawa and Schielzeth, 2013]. At timebefore mimicking the marine
230 heatwave, no significant differences were founaveen R rates in the control (C) and the
231 treatment HW, and between the treatments +3 and HWig. 4; Table 1). This trend was
232  expected because, at timethe treatments C and HW were kept at the sampdrature Tc
233 (16.5°CT<20°C); while, +3 and HW+3 were both alz{T.3=Tc+3°C; 19.5°GT,3<23°C;

234  see fig. 3). However at,tC and HW were both different from +3 and HW+3thhower Ry

235 values measured in +3 and HW+3 (0.88+0.08 and @.8B+:mol O, gFW' h',
11



236 respectively), and higher values in C and HW (1®I% and 1.38+0.12mol O, gFW* b,
237 respectively) Pc +3= 0.049,pc pw+3= 0.021,pxw +3 = 0.012,Prw Hw+3 = 0.005]. At time {£,
238 immediately after the MHW, the lowestyRates were measured in the HW treatment
239 (0.53+0.06umol O, gFW* h'), while the highest rates were found in the treatim+3
240 (1.220.04umol O, gFW' h'") [Paw.s = 0.001]; intermediate values were measured in C
241 (0.90£0.07umol O, gFW* h'"). At time & in HW+3, the lowest Rvalues were registered
242 (0.450.10umol O, gFW™' h™) [pc w3 = 0.026].

243 Ryin the control group did not change significantiyentime (Fig. 4). In the treatment +3,
244 Ry rates increased from to t (0.88+0.10 and 1.22+0.04mol O, gFW* h!, respectively)
245 [put, = 0.023], and decreased fromto t (1.22+0.04 and 0.88+0.Q7mol O, gFW* h',
246 respectively) Pt = 0.027]. In HW, Rd rates decreased frgnott, going from 1.38+0.12
247 to 0.53%0.04umol O, gFW™* h™* [pr.t, < 0.001]. In HW+3, Rd rates decreased franott
248 (0.81%0.09 to 0.45+0.1pmol O, gFW* h") [pt.t, = 0.015]. While, no changes between t
249  (right after the MHW end) and (after the recovery period from the MHWgre observed
250 in both the heatwave conditions HW and HW+3.

251

252 3.2. Photosynthesis

253 LMMs explained over 58% of the variation in net pgynthesis (f) and 67% of variation
254 in gross photosynthesis JP[conditional pseudo-R = 0.581 and 0.672, ,Pand R
255  respectively]. No differences in,Pates were found among temperature treatmentacht e
256 experimental time {f t,, t3; Fig. 4; Table 1). Likewise, no differences ig rates were
257 apparent at time;tbetween the control (C) and the treatment at +@®4+0.29 and

258 4.13+0.12umol O, gFW" h*, respectively), or between HW and HW+3 (4.16+0:3f!

12



259 4.23+0.23umol O, gFW* h, respectively). At time,t the lowest pPvalues were measured
260 in the treatment HW (2.44+0.28nol O, gFW* h') and the highest in +3 (3.64+0.33 and
261 umol O, gFW' h), with these being significantly different from aaother Puw s =
262  0.036]. No significant differences were found amaiigtemperature treatments at time t
263  after the recovery period from the MHW end.

264 In C, R, rates did not vary among experimental time paiifd, and t), while R, decreased
265 from t; to ; [pt,t; = 0.028]. In the treatment +3, both rom 3.26+0.13 to 1.94+0.3&mol
266 O, gFW' h') and B (from 4.13+0.12 to 2.83+0.3@nol O, gFW* h'") decreased from to
267 3 [ptutz= 0.004 and 0.003,,;”and R respectively]. In the treatment HW, &d not change
268  significantly overtime, while fPdecreased from to t (4.16+0.35 and 2.78+0.22mol O,
260 gFW! h', respectively) fpt.t.< 0.001], as well as from to t[pt.t;= 0.001]. In HW+3, the
270 lowest B and B rates were found after the recovery period from MHW end (4,
271 1.84+0.15 and 2.29+0.28no0l O, gFW' h*, respectively), withstdiffering from both t and

272 t[pt,t;< 0.001 and 0.00%t.t; = 0.02%nd 0.007, Pand B respectively].

273
5 - " Ry
4 _JL' - - o P,
o P,
. u e B f T
3 -
= 2
5 17
OP' O ' T T T
E 11
SR
2
C |HW| +3 |HW+3 C |HW| +3 |HW+3 C |HW| +3 |HW+3
t1 - 4 weeks t2 - 5 weeks (MHW) ts - 7 weeks (MHW recovery)
274
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Fig. 4. Net and gross photosynthesis, @hd B) rates at the experimental irradiance, and
respiration (R) rates in the dark in the 4 temperature treatm@yt$iWw, +3, HW+3) for the

3 incubation times {t before the MHW start;,t right after the MHW end;;t after a
recoveryperiod from the MHW end). Data are means * SE, amedexpressed in terms of
O, release (negative values for respiration correddgonO, consumption)n = 4 for each

treatment.

3.3. Calcification

There was only weak evidence for an effect of tawmajpee oncalcification rates measured
in the dark (G, Table 1), with no post-hoc differences found agheemperature treatments,
highlighting uncertainty about how temperature e&feG, rates. This is in alignment with
the low percentage of variance explained by the LSV, conditional pseudo-R= 0.034].
Variability in G rates was inherently high, especially at the starthe experiment (i.e.,
time t), leading to LMMs with poor explanatory power [ctitional pseudo-R= 0.0601].
G, rates were affected by temperature at timewnith +3 and HW+3 being significantly
different from each othempfs yw+3 < 0.001], despite being at the same temperatuseAl
time  +3 and HW+3 (1.22+0.31 and 1.47+0.860l CaCQ gFW" h™) exhibited (non-
significant) higher @rates than C and HW (0.87+0.03 and 0.81+Qut®l CaCQ gFW™* bt

! respectively). After 2-weeks-recovery from the MHW®), an opposite trend was
observed, with +3 and HW+3 characterized by theekivzrates (0.21+0.09 and 0.43+0.07
umol CaCQ gFW* h?), and C and HW by the highest rates (0.69+0.200a52+0.07:mol
CaCQ gFW! h', respectively). Although non-significant, at timgthe lowest G rates

were measured in the treatment HW+3, with negatigskies corresponding to a net

dissolution of the algae (-0.30+0.1mmol CaCQ gFW' h?), and the highest ones were

14
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found in C (0.22+0.38&mol CaCQ gFW' h', with one sample having experienced

dissolution).

G4 rates did not change significantly over time (Eab). In C and HW, no differences in G
rates were observed among experimental time pints and t). G rates decreasdmm t,
to & in the +3°C condition, with rates varying from 240.31 to 0.230.09 umol CaCQ
gFW?' h?' [ptt; = 0.001]; and in the HW+3 treatment, from #0733 to 0.430.07 umol

CaCQ gFW*! h' [pt,t; = 0.015].

[39]
J

15 - = Gy
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= 14
=
%05
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g .05 -

C |Hw| +3 |Hw+3 C |Hw| +3 |Hw+3 C |Hv\| +3 |Hw+3

t1 - 4 weeks t2 - 5 weeks (MHW) ts - 7 weeks (MHW recovery)

Fig. 5. Calcification rates in the dark (f>and at the experimental irradiance)(@® the 4
treatments (C, HW, +3, HW+3) for the 3 incubatiomes (§, before the MHW start,t
right after the MHW end;stafter a recoverperiod from the MHW end). Negative values
for algal calcification correspond to the decat@fion activity quantified as increase in

total alkalinity. Data are expressed as means :nSE4 for each treatment.
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Tablel

Summary of linear mixed effects models testing the etiet@mperature and experimental time@rofficinalis metabolism
in the dark and at the incubation irradiancg. d&rk respiration; P net production; £ gross production; § net calcification

in the dark; @ net calcification in the lighBolded values indicate-values < 0.05.

Dark Light
Ry Gy Pn Pq G
Factor df F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value
Temperatur 3 8.37¢ 0.003 4,962 0.018 1.56¢ 0.24¢ 1.12¢ 0.37¢ 32.42: <.001
Time 2 21.96: <.001 3.03( 0.06¢ 15.267 <.001 33.14: <.001 7.39:% 0.004

Interactior 6 8.83¢ <.001 0.83: 0.557 1.87: 0.127% 2.53¢ 0.048 6.73% <.001
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4. Discussion
Macroalgae occurring in intertidal habitats (sushCa officinalis) are exposed to strong
daily and seasonal temperature fluctuations. Ad,stieey may have a greater ability to
acclimate to higher temperature regimes than mégaeafound in more thermally stable
conditions. However, little is known of how extrernkanges in water temperature, e.g.
heatwaves, affect algae physiology in coastal pmks.
Temperature has a fundamental effect on chemieation rates, and a general dependence
of respiration and photosynthesis to temperaturavad known in macroalgae (Luning,
1990).
Our results forC. officinalis confirmed this dependence by showing, initiallytiate t, a
decrease in respiration rates at elevated tempesdtllowed by an opposite trend after the
MHW simulation, attand §, with an increase in respiration rates with higieanperatures.
This increase in respiration rates at elevated ézatpres is in line with other studies carried
out on different species of coralline algae (Ad&973; Digby, 1977; Ichiki et al., 2001;
Martin et al., 2006; Steller et al., 2007, Williaomset al., 2017). In particular, when the
MHW was simulated, we observed an increase in r&spn rates at temperatures raised by
+3°C relative to measured summer values (i.e.,aup o Of about 23°C; see Fig. 2).
However, a further 1°C increase (mimicking a MHW)the HW+3 treatment (i.e., up to a
Tmax Of about 24°C) led to respiration rate reductiombis shows that a decline in
respiration occurs beyond a thermal optimum thatlase to the SST registered in the
summer season (i.e., as simulated in our experinvéht T, daily oscillating in the range
16.5-20°C). The same trend is confirmed after 2ksed recovery from the MHW end, at
time &. These results are in accordance with those reghdoy Martin et al. (2013) on the

temperate coralline alg&ithophyllum cabiochae, demonstrating a positive effect on
17



369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390
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392

respiration rates at higher temperatures duringth@er months, and either a negative or a
nil response during the summer when temperaturesckoser to a thermal optimum
(Anthony et al., 2008). We also observed that dopiged exposure to high temperatures
(i,e., &, 7 weeks up to a .k of about 23°C in daily temperature variation) rteggy
affected respiration rates, with the lowest resravalues registered in HW+3 (0.45+0.10
umol O, gFW* h'h).

There was limited evidence for an effect of tempeson photosynthesis @f. officinalis,
despite a significant increase of Rtes with temperature, reaching a maximum of +3°C
variation with respect to the control, was obserafteér 5 weeks (ab)t Although non-
significant, the same increase is observed jnTRis general trend mirrors the results
reported forC. officinalis (Digby, 1977; Williamson et al., 2017) and otheratline algae
(Digby, 1977; Ichiki et al., 2001; Martin et al.0@6; Steller et al., 2007; Martiet al,
2013), which indicate higher photosynthesis vasiatias a consequence of elevated
temperature (c.a. 10°C) and irradiance changesemetwvinter and summer (Martin et al.,
2013; Williamson et al., 2017). By simulating sunmmenditions of irradiance and SST in
our experiment, we recorded small positive varrgion photosynthesis between the control
and the elevated temperature treatments. This noigtur at temperatures already close to
the thermal optimum (Anthony et al., 2008), andtiply agrees with the observation of
Martin et al. (2013) inL. cabiochae where significant effects of the 3°C warming were
detected on £in colder seasons but not in the summer. Impdygtaas already noted for
respiration, a prolonged exposure to high tempegat(i.e., 4, 7 weeks up to a,ky of about
23°C) negatively affected,Pates, as a possible effect of thermal stress.

In general, dark calcification showed high vari@piin all treatments at all experimental

time points. This reflects the findings of Kolzenfpet al. (2019) orCorallina officinalis,
18
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and suggests that the already small amount officalton in the dark is easily influenced
by environmental factors such as temperature. Heweawe observed lower rates of calcium
carbonate precipitation in the dark with respecexperimental irradiance. This is in line
with the results reported fakmphiroa anceps andA. foliacea by Borowitzka (1981), for
Corallina frondescens andC. vancouveriensis by McCoy et al. (2016), and f&@. officinalis

by Kolzenburg et al. (2019), due to the strict axtion between algal photosynthetic
activity, providing the greatest contribute to Cfixation, and calcification. The rates of
calcification under experimental irradiance andthe dark did not exhibit significant
responses to temperature within each time poiewiBus studies on coralline algae showed
similar results, with high variations in calcificat rates reported for coralline algae under
high changes of both irradiance and temperaturet{iMat al., 2013; McCoy et al., 2016;
Williamson et al., 2017; Kolzenburg et al. 2019).the present study we only considered
lower temperature regimes and constant valuesadiance compared to previous studies
However, a general (but non-significant) calcificatincrease under summer irradiance
conditions was observed in the first 5 weeks ofdkperiment for a +3°C (and also +4°C
after 4 weeks) variation with respect to the cdntemmperature. This agrees with the
lowering of calcification rates at cooler temperatuseen in otheCorallina species C.
frondescens and C. vancouveriensis) by McCoy et al. (2016). Critically, the significa
decrease measured in 1@tes at elevated temperatures (six fold for tB&#C+condition, and
threefold for the HW+3 condition, respectively)taé end of the recovery time (fromtb

t3) may possibly be related to thermal stress. Thesalts reflect findingof Vasquez-
Elizondo and Enriquez (2016) on the coralline algaephiroa tribulusfrom,
Neogoniolithon sp. and Lithothamnion sp., indicating losses in algal calcification after

exposure to elevated temperature (+ 2°C abthee local maximum monthly mean
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temperature). This decreasing trend is similarha tase of dark calcification, with a
significant decrease of {Gn the +4°C condition at the end of the recovémyet consistent
with the effect of a stress induced by a prolongadming.

Furthermore, it has to be considered that unddmrapbgenic climate change, MHWSs will
likely increase in intensity and frequency (Hoba#wl., 2016), and that coralline algae will
possibly be affected by other stresses such as@madification (Hall-Spencer et al., 2008;
Kuffner et al., 2008; Martin and Gattuso, 2009; &agpla et al., 2012; Donnarumma et al.,
2014). Our findings indicated that MHWSs could berentiarmful when combined to the
long-term temperature increase predicted by theoénlde century. This overall increase in
temperature and the increase in frequency andsityeaf the heatwaves could thus have
severe effects on the species’ distribution, cngaéi range shift northwards (Aradjo et al.,
2005). Therefore, southern margin populationsCofofficinalis, together with the high
densities of macrofaunal organisms living withieitHfronds, may risk disappearing in their
original environment as temperatures warm in futoceans (Kolzenburg et al., 2019).
However, at higher latitudes, aragonite saturasitate and ocean pH will reach critically
low levels first (Steinacher et al., 2009), potalhi leading to a shift of calcifying species
distribution southwards (Orr et al., 2005; Yaralket 2012; Lenton et al., 2015). This might
result in a contraction of the natural distributioh C. officinalis, yet more studies
considering the combined effects of warming andliication are needed to predict how

this species’ distribution and abundance may bectdtl by anthropogenic climate change.

5. Conclusion
By combining the effects of thermal stress indubgdides, gradual ocean warming, and

marine heatwaves, we have shown how important hisigan be obtained on the likely
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physiological responses of coralline algae to dexEhange induced temperature variations.
Our experiment was designed to simulate summeritonsl, in order to understand how
this species will respond to temperature variatisiesnming from climate warming when
the algae already experience conditions that ase their thermal optimum. Our results
indicated that temperature has a significant efi@etC. officinalis physiology. After
exposure to +3°C from the field temperature (up ., of about 23°C), both respiration
and photosynthesis increased. This trend has #lreeen reported for several species of
coralline algae (Martin et al., 2013). After 5 wegkalcification seemed to be enhanced at
higher temperatures (up to &z} of about 23 and 24°C), but at the end of the erpent
calcification rates decreased at those temperahegsnd the thermal optimum. The same
trend was noted for all the physiological processaggesting that a prolonged exposure to
high temperatures (i.e., 7 weeks up to @yTof about 23°C) negatively affects the
physiologyof C. officinalis, as a possible effect of thermal stress. A onekvimatwave of
+1°C with respect to the control temperature did significantly affect respiration,
photosynthesis, or calcification ratdsis might be explained by the good adaptatio.of
officinalis to both seasonal and tidal temperature variab{Myilliamson et al., 2017).
Conversely, a further increase of 1°C (due to thdVl) to the 3°C increase predicted by
the end of the century, often induced physiologres reductions, underlining that MHWs
may have a negative impact on this species in #w future.Given the fundamental
ecological role ofC. officinalis and other coralline algae as habitat-forming sgg@tronger
and more frequent temperature extremes over thiedeeades could result in a decrease in
coralline algal abundance or a shift in the spéaiestribution, with potentially major

consequences for biodiversity in coastal ecosystems
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Highlights

» After a 7-weeks exposure, physiological rates deszd at elevated
temperatures.

* A one-week heatwave of 1°C did not affect algalanetism.

* Heatwave of 1°@dded to the 3°C increase induced a reductiongad al
metabolisms.



