1,502 research outputs found

    Evaluation of conventional and molecular strategies for the rapid diagnosis and molecular characterisation of strains of Mycobacterium tuberculosis

    Get PDF
    Laboratory diagnosis of tuberculosis is often difficult and time consuming. This study has evaluated some new strategies for improved isolation and detection of Mycobacterium tuberculosis in clinical specimens. This work was conducted over several years examining samples from the a high tuberculosis prevalence population in Jeddah, Saudi Arabia and in the low tuberculosis prevalence setting in Queensland, Australia. Commercial nucleic acid amplification technologies were evaluated and compared with in-house real-time quantitative PCR strategies for both pulmonary and extrapulmonary specimens and for paraffin embedded tissue samples. The study examined strategies for the detection of multidrug resistance strains through the use of Lipa assay to detect mutations in the rpoB gene. Variable numbers of tandem DNA repeat (VNTR) typing was applied to samples from Saudi Arabia and Queensland, Australia to assess their discriminatory power and to demonstrate the diversity and uniqueness of strains of M. tuberculosis in distinct geographical regions. A combination of VNTR typing targeting six ETR loci and an additional three polymorphic MIRU loci was applied to a strains of MTB to enhance discrimination of strains. The results demonstrated that culture remains the "gold standard" for diagnosis and that a liquid culture system is essential for timely isolation of mycobacteria. Direct nucleic acid techniques are valuable diagnostic tools in samples where AFBs can be demonstrated but have markedly reduced sensitivity in AFB smear negative MTB culture positive samples. A combination of VNTR and MIRU typing provides excellent discrimination of strains of Mycobacterium tuberculosis. This stable typing strategy relies on PCR which allows for real-time epidemiology of transmission to be monitored.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The effect of sexual selection on adaptation and extinction under increasing temperatures

    Get PDF
    Strong sexual selection has been reported to both enhance and hinder the adaptive capacity and persistence of populations when exposed to novel environments. Consequently, how sexual selection influences population adaption and persistence under stress remains widely debated. Here we present two empirical investigations of the fitness consequences of sexual selection on populations of the Indian meal moth, Plodia interpunctella, exposed to stable or gradually increasing temperatures. When faced with increasing temperatures strong sexual selection was associated with both increased fecundity and offspring survival compared to populations experiencing weak sexual selection, suggesting sexual selection acts to drive adaptive evolution by favouring beneficial alleles. Strong sexual selection did not, however, delay extinction when the temperature became excessively high. By manipulating individuals’ mating opportunities during fitness assays we were able to assess the effect of multiple mating independently from the effect of population-level sexual selection, and found that polyandry has a positive effect on both fecundity and offspring survival under increasing temperatures in those populations evolving with weak sexual selection. Within stable temperatures there were some benefits from strong sexual selection but these were not consistent across the entire experiment, possibly reflecting changing costs and benefits of sexual selection under stabilising and directional selection. These results indicate that sexual selection can provide a buffer against climate change and increase adaptation rates within a continuously changing environment. These positive effects of sexual selection may however be too small to protect populations and delay extinction when environmental changes are relatively rapid

    Comparison of Two Detailed Models of Aedes aegypti Population Dynamics

    Get PDF
    The success of control programs for mosquito-­borne diseases can be enhanced by crucial information provided by models of the mosquito populations. Models, however, can differ in their structure, complexity, and biological assumptions, and these differences impact their predictions. Unfortunately, it is typically difficult to determine why two complex models make different predictions because we lack structured side-­by-­side comparisons of models using comparable parameterization. Here, we present a detailed comparison of two complex, spatially explicit, stochastic models of the population dynamics of Aedes aegypti, the main vector of dengue, yellow fever, chikungunya, and Zika viruses. Both models describe the mosquito?s biological and ecological characteristics, but differ in complexity and specific assumptions. We compare the predictions of these models in two selected climatic settings: a tropical and weakly seasonal climate in Iquitos, Peru, and a temperate and strongly seasonal climate in Buenos Aires, Argentina. Both models were calibrated to operate at identical average densities in unperturbedconditions in both settings, by adjusting parameters regulating densities in each model (number of larval development sites and amount of nutritional resources). We show that the models differ in their sensitivityto environmental conditions (temperature and rainfall) and trace differences to specific model assumptions.Temporal dynamics of the Ae. aegypti populations predicted by the two models differ more markedly under strongly seasonal Buenos Aires conditions. We use both models to simulate killing of larvae and/or adults with insecticides in selected areas. We show that predictions of population recovery by the models differ substantially, an effect likely related to model assumptions regarding larval development and (director delayed) density dependence. Our methodical comparison provides important guidance for model improvement by identifying key areas of Ae. aegypti ecology that substantially affect model predictions, and revealing the impact of model assumptions on population dynamics predictions in unperturbed and perturbed conditions.Fil: Legros, Mathieu. University of North Carolina; Estados UnidosFil: Otero, Marcelo Javier. Universidad de Buenos Aires; ArgentinaFil: Romeo Aznar, Victoria Teresa. Universidad de Buenos Aires; ArgentinaFil: Solari, Hernan Gustavo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y TÊcnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Gould, Fred. National Institutes of Health; Estados UnidosFil: Lloyd, Alun L.. National Institutes of Health; Estados Unido

    Large-Scale Release of Campylobacter Draft Genomes: Resources for Food Safety and Public Health from the 100K Pathogen Genome Project.

    Get PDF
    Campylobacter is a food-associated bacterium and a leading cause of foodborne illness worldwide, being associated with poultry in the food supply. This is the initial public release of 202 Campylobacter genome sequences as part of the 100K Pathogen Genome Project. These isolates represent global genomic diversity in the Campylobacter genus

    Fur seal microbiota are shaped by the social and physical environment, show mother‐offspring similarities and are associated with host genetic quality

    Get PDF
    Despite an increasing appreciation of the importance of host‐microbe interactions in ecological and evolutionary processes, the factors shaping microbial communities in wild populations remain poorly understood. We therefore exploited a natural experiment provided by two adjacent Antarctic fur seal (Arctocephalus gazella) colonies of high and low social density and combined 16S rRNA metabarcoding with microsatellite profiling of mother‐offspring pairs to investigate environmental and genetic influences on skin microbial communities. Seal‐associated bacterial communities differed profoundly between the two colonies, despite the host populations themselves being genetically undifferentiated. Consistent with the hypothesis that social stress depresses bacterial diversity, we found that microbial alpha diversity was significantly lower in the high‐density colony. Seals from one of the colonies that contained a stream also carried a subset of freshwater‐associated bacteria, indicative of an influence of the physical environment. Furthermore, mothers and their offspring shared similar microbial communities, in support of the notion that microbes may facilitate mother‐offspring recognition. Finally, a significant negative association was found between bacterial diversity and heterozygosity, a measure of host genetic quality. Our study thus uncovers a complex interplay between environmental and host genetic effects, while also providing empirical support for the leash model of host control, which posits that bacterial communities are driven not only by bottom‐up species interactions, but also by top‐down host regulation. Taken together, our findings have broad implications for understanding host‐microbe interactions as well as prokaryotic diversity in general

    Surface Instability of Icicles

    Full text link
    Quantitatively-unexplained stationary waves or ridges often encircle icicles. Such waves form when roughly 0.1 mm-thick layers of water flow down the icicle. These waves typically have a wavelength of 1cm approximately independent of external temperature, icicle thickness, and the volumetric rate of water flow. In this paper we show that these waves can not be obtained by naive Mullins-Sekerka instability, but are caused by a quite new surface instability related to the thermal diffusion and hydrodynamic effect of thin water flow.Comment: 11 pages, 5 figures, Late

    The effects of childbirth on the pelvic-floor

    Get PDF
    Basically, vaginal delivery is associated with the risk of pelvic floor damage. The pelvic floor sequelae of childbirth includes anal incontinence, urinary incontinence and pelvic organ prolapse. Pathophysiology, incidence and risk factors for the development of the respective problems are reviewed. Where possible, recommendations for reducing the risk of pelvic floor damage are given

    Production of extended-spectrum β -lactamases and the potential indirect pathogenic role of Prevotella isolates from the cystic fibrosis respiratory microbiota

    Get PDF
    Extended-spectrum β-lactamase (ESBL) production and the prevalence of the β-lactamase-encoding gene blaTEM were determined in Prevotella isolates (n = 50) cultured from the respiratory tract of adults and young people with cystic fibrosis (CF). Time–kill studies were used to investigate the concept of passive antibiotic resistance and to ascertain whether a β-lactamase-positive Prevotella isolate can protect a recognised CF pathogen from the action of ceftazidime in vitro. The results indicated that approximately three-quarters (38/50; 76%) of Prevotella isolates produced ESBLs. Isolates positive for ESBL production had higher minimum inhibitory concentrations (MICs) of β-lactam antibiotics compared with isolates negative for production of ESBLs (P < 0.001). The blaTEM gene was detected more frequently in CF Prevotella isolates from paediatric patients compared with isolates from adults (P = 0.002), with sequence analysis demonstrating that 21/22 (95%) partial blaTEM genes detected were identical to blaTEM-116. Furthermore, a β-lactamase-positive Prevotella isolate protected Pseudomonas aeruginosa from the antimicrobial effects of ceftazidime (P = 0.03). Prevotella isolated from the CF respiratory microbiota produce ESBLs and may influence the pathogenesis of chronic lung infection via indirect methods, including shielding recognised pathogens from the action of ceftazidime

    BIIL 284 reduces neutrophil numbers but increases P. aeruginosa bacteremia and inflammation in mouse lungs

    Get PDF
    Background: A clinical study to investigate the leukotriene B4 (LTB4)-receptor antagonist BIIL 284 in cystic fibrosis (CF) patients was prematurely terminated due to a significantly increased risk of adverse pulmonary events. We aimed to establish the effect of BIIL284 in models of Pseudomonas aeruginosa lung infection, thereby contributing to a better understanding of what could have led to adverse pulmonary events in CF patients. Methods: P. aeruginosa DNA in the blood of CF patients during and after acute pulmonary exacerbations and in stable patients with non-CF bronchiectasis (NCFB) and healthy individuals was assessed by PCR. The effect of BIIL 284 treatment was tested in an agar bead murine model of P. aeruginosa lung infection. Bacterial count and inflammation were evaluated in lung and other organs. Results: Most CF patients (98%) and all patients with NCFB and healthy individuals had negative P. aeruginosa DNA in their blood. Similarly, the P. aeruginosa-infected mice showed bacterial counts in the lung but not in the blood or spleen. BIIL 284 treatment decreased pulmonary neutrophils and increased P. aeruginosa numbers in mouse lungs leading to significantly higher bacteremia rates and lung inflammation compared to placebo treated animals. Conclusions: Decreased airway neutrophils induced lung proliferation and severe bacteremia in a murine model of P. aeruginosa lung infection. These data suggest that caution should be taken when administering anti-inflammatory compounds to patients with bacterial infections
    • …
    corecore