18 research outputs found
Indian Microfinance Sector: A Case Study
In developing areas of the world with very little economic structure, many activities are not monetized. In other words, money is not used to carry out these tasks because the people in these areas do not have the expendable funds required. In order to combat this problem, micro financing has become increasingly more apparent in these areas of distress. Microfinance is an economic development strategy that allows for those in need to borrow actual money in order to start a business, go to school, or even gain access to everyday living requirements. Microfinance has made tremendous strides over the years, but still faces several obstacles including regulation, loan strategies, and loan consumption. This study will attempt to analyze the microfinance industry in India by challenging certain aspects of its use, as well as offer suggestions that could have beneficial effects upon the industry
Rossiter-McLaughlin Observations of 55 Cnc e
We present Rossiter-McLaughlin observations of the transiting super-Earth 55
Cnc e collected during six transit events between January 2012 and November
2013 with HARPS and HARPS-N. We detect no radial-velocity signal above 35 cm/s
(3-sigma) and confine the stellar v sin i to 0.2 +/- 0.5 km/s. The star appears
to be a very slow rotator, producing a very low amplitude Rossiter-McLaughlin
effect. Given such a low amplitude, the Rossiter-McLaughlin effect of 55 Cnc e
is undetected in our data, and any spin-orbit angle of the system remains
possible. We also performed Doppler tomography and reach a similar conclusion.
Our results offer a glimpse of the capacity of future instrumentation to study
low amplitude Rossiter-McLaughlin effects produced by super-Earths.Comment: Accepted for publication in ApJ Letter
The Science Case for an Extended Spitzer Mission
Although the final observations of the Spitzer Warm Mission are currently
scheduled for March 2019, it can continue operations through the end of the
decade with no loss of photometric precision. As we will show, there is a
strong science case for extending the current Warm Mission to December 2020.
Spitzer has already made major impacts in the fields of exoplanets (including
microlensing events), characterizing near Earth objects, enhancing our
knowledge of nearby stars and brown dwarfs, understanding the properties and
structure of our Milky Way galaxy, and deep wide-field extragalactic surveys to
study galaxy birth and evolution. By extending Spitzer through 2020, it can
continue to make ground-breaking discoveries in those fields, and provide
crucial support to the NASA flagship missions JWST and WFIRST, as well as the
upcoming TESS mission, and it will complement ground-based observations by LSST
and the new large telescopes of the next decade. This scientific program
addresses NASA's Science Mission Directive's objectives in astrophysics, which
include discovering how the universe works, exploring how it began and evolved,
and searching for life on planets around other stars.Comment: 75 pages. See page 3 for Table of Contents and page 4 for Executive
Summar
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
TOI-836 : a super-Earth and mini-Neptune transiting a nearby K-dwarf
Funding: TGW, ACC, and KH acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T = 8.5 mag), high proper motion (âŒ200 mas yrâ1), low metallicity ([Fe/H]ââ0.28) K-dwarf with a mass of 0.68 ± 0.05 Mâ and a radius of 0.67 ± 0.01 Râ. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70 ± 0.07 Râ super-Earth in a 3.82 day orbit, placing it directly within the so-called âradius valleyâ. The outer planet, TOI-836 c, is a 2.59 ± 0.09 Râ mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5 ± 0.9 Mâ, while TOI-836 c has a mass of 9.6 ± 2.6 Mâ. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet.Publisher PDFPeer reviewe
TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf
We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364)
using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (
mag), high proper motion ( mas yr), low metallicity
([Fe/H]) K-dwarf with a mass of M and a
radius of R. We obtain photometric follow-up
observations with a variety of facilities, and we use these data-sets to
determine that the inner planet, TOI-836 b, is a R
super-Earth in a 3.82 day orbit, placing it directly within the so-called
'radius valley'. The outer planet, TOI-836 c, is a R
mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that
TOI-836 b has a mass of M , while TOI-836 c has a mass
of M. Photometric observations show Transit Timing
Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are
no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by
an undetected exterior planet
Planetary Migration in Protoplanetary Disks
The known exoplanet population displays a great diversity of orbital architectures, and explaining the origin of this is a major challenge for planet formation theories. The gravitational interaction between young planets and their protoplanetary disks provides one way in which planetary orbits can be shaped during the formation epoch. Disk-planet interactions are strongly influenced by the structure and physical processes that drive the evolution of the protoplanetary disk. In this review we focus on how disk-planet interactions drive the migration of planets when different assumptions are made about the physics of angular momentum transport, and how it drives accretion flows in protoplanetary disk models. In particular, we consider migration in discs where: (i) accretion flows arise because turbulence diffusively transports angular momentum; (ii) laminar accretion flows are confined to thin, ionised layers near disk surfaces and are driven by the launching of magneto-centrifugal winds, with the midplane being completely inert; (iii) laminar accretion flows pervade the full column density of the disc, and are driven by a combination of large scale horizontal and vertical magnetic fields
Veterinary bulletin
2017yCat..17929031L - publié 2014ApJ...792L..31LShortly after the detection of 55 Cnc e's transit was announced, we requested four spectroscopic time series on HARPS (Prog. ID 288.C-5010; PI: Triaud) as Director Discretionary Time. HARPS is installed on the 3.6 m telescope at the European Southern Observatory on La Silla, Chile (Mayor et al. 2003Msngr.114...20M). The position of 55 Cnc in the sky-RA(J2000)=08:52:35.81, DE(J2000)=+28:10:50.95-is low as seen from La Silla. The target remains at a zenith distance of z<2 for only ~2.5 hr per night, with a transit duration of about 1.5 hr having to fit within this tight window. This constraint on the airmass, essential to obtain precise radial velocities (RVs), is set by the instrumental atmospheric dispersion corrector. We used the ephemeris by Gillon et al. (2012, J/A+A/539/A28), then at an advanced stage of preparation, to schedule our observations. In total, we gathered 179 spectra on the nights starting on 2012 January 27, 2012 February 13, 2012 February 27, and 2012 March 15 UT