61 research outputs found

    Mycobacterium tuberculosis lineage: a naming of the parts

    Get PDF
    There have been many reports of groups of related Mycobacterium tuberculosis strains described variously as lineages, families or clades. There is no objective definition of these groupings making it impossible to define relationships between those groups with biological advantages. Here we describe two groups of related strains obtained from an epidemiological study in Tanzania which we define as the Kilimanjaro and Meru lineages on the basis of IS6110 restriction fragment length polymorphism (RFLP), polymorphic GC rich sequence (PGRS) RFLP and mycobacterial interspersed repeat unit (MIRU) typing. We investigated the concordance between each of the typing techniques and the dispersal of the typing profiles from a core pattern. The Meru lineage is more dispersed than the Kilimanjaro lineage and we speculate that the Meru lineage is older. We suggest that this approach provides an objective definition that proves robust in this epidemiological study. Such a framework will permit associations between a lineage and clinical or bacterial phenomenon to be tested objectively. This definition will also enable new putative lineages to be objectively tested

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Tyre Models, Propulsion and Handling of Road Vehicles

    No full text

    Numerical integration approach to the problem of simulating damage in an asphalt pavement

    Get PDF
    A road develops permanent deformation or fatigue damage because of the stress and strain induced in its structure by surface loading and environmental change. Dynamic tyre forces generated by the vibration of moving heavy vehicles excited by the road surface profile are strongly influenced by vehicle speed and dynamic properties. A mechanistic-empirical approach is implemented here to simulate the deterioration of a pavement, taking account of dynamic excitation of the axles. This paper highlights the importance of statistical spatial repeatability in damage evolution during the pavement life. Numerical integration of the distribution of forces at each point is shown to be sufficient to predict the changing road surface and elastic modulus. This results in an approximate 100-fold increase in computational efficiency. Finally, the pattern of the forces generated by the axles of a half car is found to be a little less damaging than that of independent quarter cars. In the examples considered, the quarter car reduces calculated pavement life by an average of 6%.Deposited by bulk impor
    corecore