7 research outputs found

    Establishing and operating a 'virtual ward' system to provide care for patients with COVID-19 at home: experience from The Gambia.

    Get PDF
    Health systems in sub-Saharan Africa have remained overstretched from dealing with endemic diseases, which limit their capacity to absorb additional stress from new and emerging infectious diseases. Against this backdrop, the rapidly evolving COVID-19 pandemic presented an additional challenge of insufficient hospital beds and human resource for health needed to deliver hospital-based COVID-19 care. Emerging evidence from high-income countries suggests that a 'virtual ward' (VW) system can provide adequate home-based care for selected patients with COVID-19, thereby reducing the need for admissions and mitigate additional stress on hospital beds. We established a VW at the Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, a biomedical research institution located in The Gambia, a low-income west African country, to care for members of staff and their families infected with COVID-19. In this practice paper, we share our experience focusing on the key components of the system, how it was set up and successfully operated to support patients with COVID-19 in non-hospital settings. We describe the composition of the multidisciplinary team operating the VW, how we developed clinical standard operating procedures, how clinical oversight is provided and the use of teleconsultation and data capture systems to successfully drive the process. We demonstrate that using a VW to provide an additional level of support for patients with COVID-19 at home is feasible in a low-income country in sub-Saharan Africa. We believe that other low-income or resource-constrained settings can adopt and contextualise the processes described in this practice paper to provide additional support for patients with COVID-19 in non-hospital settings

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar

    Afri-Can Forum 2

    Full text link

    Afri-Can Forum 2

    Get PDF
    CITATION: Mukudu, H., et al. 2016. Afri-Can Forum 2. BMC Infectious Diseases, 16:315, doi:10.1186/s12879-016-1466-6.The original publication is available at https://bmcinfectdis.biomedcentral.comENGLISH ABSTRACT: We are pleased to present peer reviewed forum proceedings of the 2nd synchronicity forum of GHRI/CHVIfunded Canadian and African HIV prevention and vaccine teams Forum objectives ∙GHRI-funded capacity building and HIV prevention research teams presented highlights of achievements ∙Teams discussed how to jointly build on achievements for sustainability ∙Provided an opportunity for inter-team collaboration, synchronize best approach to capacity building, mentoring of new researchers and building leadership ∙Provided opportunities for informal discussions and networking among the teams. ∙Teams learnt about recent advances in the area of African regulatory and ethics review process ∙The forum proceedings was a special supplement in an openaccess journal was producedhttps://bmcinfectdis.biomedcentral.com/articles/supplements/volume-16-supplement-2Publisher's versio
    corecore